Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 141, 32 pages      arXiv:2008.10649      https://doi.org/10.3842/SIGMA.2020.141
Contribution to the Special Issue on Representation Theory and Integrable Systems in honor of Vitaly Tarasov on the 60th birthday and Alexander Varchenko on the 70th birthday

Extension Quiver for Lie Superalgebra $\mathfrak{q}(3)$

Nikolay Grantcharov a and Vera Serganova b
a) Department of Mathematics, University of Chicago, Chicago, IL 60637, USA
b) Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA

Received August 31, 2020, in final form December 10, 2020; Published online December 21, 2020

Abstract
We describe all blocks of the category of finite-dimensional $\mathfrak{q}(3)$-supermodules by providing their extension quivers. We also obtain two general results about the representation of $\mathfrak{q}(n)$: we show that the Ext quiver of the standard block of $\mathfrak{q}(n)$ is obtained from the principal block of $\mathfrak{q}(n-1)$ by identifying certain vertices of the quiver and prove a ''virtual'' BGG-reciprocity for $\mathfrak{q}(n)$. The latter result is used to compute the radical filtrations of $\mathfrak{q}(3)$ projective covers.

Key words: Lie superalgebra; extension quiver; cohomology; flag supermanifold.

pdf (531 kb)   tex (36 kb)  

References

  1. Benson D.J., Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, Cambridge Studies in Advanced Mathematics, Vol. 30, Cambridge University Press, Cambridge, 1991.
  2. Boe B.D., Kujawa J.R., Nakano D.K., Cohomology and support varieties for Lie superalgebras, Trans. Amer. Math. Soc. 362 (2010), 6551-6590, arXiv:math.RT/0609363.
  3. Brundan J., Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra ${\mathfrak q}(n)$, Adv. Math. 182 (2004), 28-77, arXiv:math.RT/0207024.
  4. Brundan J., Modular representations of the supergroup $Q(n)$. II, Pacific J. Math. 224 (2006), 65-90.
  5. Brundan J., Davidson N., Type C blocks of super category $\mathcal O$, Math. Z. 293 (2019), 867-901, arXiv:1702.05055.
  6. Cheng S.-J., Kwon J.-H., Finite-dimensional half-integer weight modules over queer Lie superalgebras, Comm. Math. Phys. 346 (2016), 945-965, arXiv:1505.06602.
  7. Cheng S.-J., Kwon J.-H., Wang W., Character formulae for queer Lie superalgebras and canonical bases of types $A/C$, Comm. Math. Phys. 352 (2017), 1091-1119, arXiv:1512.00116.
  8. Cheng S.-J., Wang W., Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, Vol. 144, Amer. Math. Soc., Providence, RI, 2012.
  9. Erdmann K., Blocks of tame representation type and related algebras, Lecture Notes in Math., Vol. 1428, Springer-Verlag, Berlin, 1990.
  10. Frisk A., Typical blocks of the category $\mathcal O$ for the queer Lie superalgebra, J. Algebra Appl. 6 (2007), 731-778.
  11. Germoni J., Indecomposable representations of special linear Lie superalgebras, J. Algebra 209 (1998), 367-401.
  12. Gruson C., Serganova V., Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras, Proc. Lond. Math. Soc. 101 (2010), 852-892, arXiv:0906.0918.
  13. Gruson C., Serganova V., Bernstein-Gelfand-Gelfand reciprocity and indecomposable projective modules for classical algebraic supergroups, Mosc. Math. J. 13 (2013), 281-313, arXiv:1111.6959.
  14. Gruson C., Serganova V., A journey through representation theory: from finite groups to quivers via algebras, Universitext, Springer, Cham, 2018.
  15. Jantzen J.C., Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, Vol. 107, Amer. Math. Soc., Providence, RI, 2003.
  16. Kac V.G., Lie superalgebras, Adv. Math. 26 (1977), 8-96.
  17. Manin Yu.I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, Vol. 289, Springer-Verlag, Berlin, 1997.
  18. Mazorchuk V., Miemietz V., Serre functors for Lie algebras and superalgebras, Ann. Inst. Fourier (Grenoble) 62 (2012), 47-75, arXiv:1008.1166.
  19. Meinrenken E., Clifford algebras and Lie theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 58, Springer, Heidelberg, 2013.
  20. Penkov I., Characters of typical irreducible finite-dimensional ${\mathfrak q}(n)$-modules, Funct. Anal. Appl. 20 (1986), 30-37.
  21. Penkov I., Serganova V., Characters of finite-dimensional irreducible ${\mathfrak q}(n)$-modules, Lett. Math. Phys. 40 (1997), 147-158.
  22. Penkov I., Serganova V., Characters of irreducible $G$-modules and cohomology of $G/P$ for the Lie supergroup $G=Q(N)$, J. Math. Sci. 84 (1997), 1382-1412.
  23. Serganova V., Quasireductive supergroups, in New Developments in Lie Theory and its Applications, Contemp. Math., Vol. 544, Amer. Math. Soc., Providence, RI, 2011, 141-159.
  24. Serganova V., Finite dimensional representations of algebraic supergroups, in Proceedings of the International Congress of Mathematicians - Seoul 2014, Vol. 1, Kyung Moon Sa, Seoul, 2014, 603-632.
  25. Sergeev A.N., The centre of enveloping algebra for Lie superalgebra $Q(n,{\mathbb C})$, Lett. Math. Phys. 7 (1983), 177-179.

Previous article  Next article  Contents of Volume 16 (2020)