Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 132, 10 pages      arXiv:2008.06825      https://doi.org/10.3842/SIGMA.2020.132
Contribution to the Special Issue on Representation Theory and Integrable Systems in honor of Vitaly Tarasov on the 60th birthday and Alexander Varchenko on the 70th birthday

Perfect Integrability and Gaudin Models

Kang Lu
Department of Mathematics, University of Denver, 2390 S. York St., Denver, CO 80210, USA

Received August 26, 2020, in final form December 02, 2020; Published online December 10, 2020

Abstract
We suggest the notion of perfect integrability for quantum spin chains and conjecture that quantum spin chains are perfectly integrable. We show the perfect integrability for Gaudin models associated to simple Lie algebras of all finite types, with periodic and regular quasi-periodic boundary conditions.

Key words: Gaudin model; Bethe ansatz; Frobenius algebra.

pdf (395 kb)   tex (17 kb)  

References

  1. Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass. - London - Don Mills, Ont., 1969.
  2. Chernyak D., Leurent S., Volin D., Completeness of Wronskian Bethe equations for rational $\mathfrak{gl}(m|n)$ spin chain, arXiv:2004.02865.
  3. Feigin B., Frenkel E., Reshetikhin N., Gaudin model, Bethe ansatz and critical level, Comm. Math. Phys. 166 (1994), 27-62, arXiv:hep-th/9402022.
  4. Feigin B., Frenkel E., Rybnikov L., Opers with irregular singularity and spectra of the shift of argument subalgebra, Duke Math. J. 155 (2010), 337-363, arXiv:0712.1183.
  5. Feigin B., Frenkel E., Toledano Laredo V., Gaudin models with irregular singularities, Adv. Math. 223 (2010), 873-948, arXiv:math.QA/0612798.
  6. Frenkel E., Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, Vol. 103, Cambridge University Press, Cambridge, 2007.
  7. Ilin A., Rybnikov L., On classical limits of Bethe subalgebras in Yangians, arXiv:2009.06934.
  8. Lu K., Lower bounds for numbers of real self-dual spaces in problems of Schubert calculus, SIGMA 14 (2018), 046, 15 pages, arXiv:1710.06534.
  9. Lu K., Mukhin E., On the Gaudin model of type $\rm G_2$, Commun. Contemp. Math. 21 (2019), 1850012, 31 pages, arXiv:1711.02511.
  10. Lu K., Mukhin E., On the supersymmetric XXX spin chains associated to $\mathfrak{gl}_{1|1}$, arXiv:1910.13360.
  11. Lu K., Mukhin E., Varchenko A., Self-dual Grassmannian, Wronski map, and representations of $\mathfrak{gl}_N$, $\mathfrak{sp}_{2r}$, $\mathfrak{so}_{2r+1}$, Pure Appl. Math. Q. 13 (2017), 291-335, arXiv:1705.02048.
  12. Molev A.I., Feigin-Frenkel center in types $B$, $C$ and $D$, Invent. Math. 191 (2013), 1-34, arXiv:1105.2341.
  13. Mukhin E., Tarasov V., Lower bounds for numbers of real solutions in problems of Schubert calculus, Acta Math. 217 (2016), 177-193, arXiv:1404.7194.
  14. Mukhin E., Tarasov V., Varchenko A., Bethe eigenvectors of higher transfer matrices, J. Stat. Mech. Theory Exp. 2006 (2006), P08002, 44 pages, arXiv:math.QA/0605015.
  15. Mukhin E., Tarasov V., Varchenko A., Spaces of quasi-exponentials and representations of $\mathfrak{gl}_N$, J. Phys. A: Math. Theor. 41 (2008), 194017, 28 pages, arXiv:0801.3120.
  16. Mukhin E., Tarasov V., Varchenko A., Schubert calculus and representations of the general linear group, J. Amer. Math. Soc. 22 (2009), 909-940, arXiv:0711.4079.
  17. Mukhin E., Tarasov V., Varchenko A., Spaces of quasi-exponentials and representations of the Yangian $Y(\mathfrak{gl}_N)$, Transform. Groups 19 (2014), 861-885, arXiv:1303.1578.
  18. Rimányi R., Tarasov V., Varchenko A., Trigonometric weight functions as $K$-theoretic stable envelope maps for the cotangent bundle of a flag variety, J. Geom. Phys. 94 (2015), 81-119, arXiv:1411.0478.
  19. Rybnikov L., The argument shift method and the Gaudin model, Funct. Anal. Appl. 40 (2006), 188-199, arXiv:math.RT/0606380.
  20. Rybnikov L., Uniqueness of higher Gaudin Hamiltonians, Rep. Math. Phys. 61 (2008), 247-252, arXiv:math.QA/0608588.
  21. Rybnikov L., Proof of the Gaudin Bethe ansatz conjecture, Int. Math. Res. Not. 2020 (2020), 8766-8785, arXiv:1608.04625.

Previous article  Next article  Contents of Volume 16 (2020)