Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 112, 24 pages      arXiv:2011.02361      https://doi.org/10.3842/SIGMA.2020.112
Contribution to the Special Issue on Representation Theory and Integrable Systems in honor of Vitaly Tarasov on the 60th birthday and Alexander Varchenko on the 70th birthday

Yangian of the General Linear Lie Superalgebra

Maxim Nazarov
Department of Mathematics, University of York, York YO10 5DD, UK

Received July 05, 2020, in final form November 01, 2020; Published online November 05, 2020

Abstract
We prove several basic properties of the Yangian of the Lie superalgebra $\mathfrak{gl}_{M|N}$.

Key words: Berezinian; Hopf superalgebra; Yangian.

pdf (445 kb)   tex (24 kb)  

References

  1. Berezin F.A., Introduction to superanalysis, Mathematical Physics and Applied Mathematics, Vol. 9, D. Reidel Publishing Co., Dordrecht, 1987.
  2. Cherednik I.V., A new interpretation of Gelfand-Tzetlin bases, Duke Math. J. 54 (1987), 563-577.
  3. Gow L., On the Yangian $Y(\mathfrak{gl}_{m|n})$ and its quantum Berezinian, Czechoslovak J. Phys. 55 (2005), 1415-1420, arXiv:math.QA/0501041.
  4. Gow L., Gauss decomposition of the Yangian $Y({\mathfrak{gl}}_{m|n})$, Comm. Math. Phys. 276 (2007), 799-825, arXiv:math.QA/0605219.
  5. Milnor J.W., Moore J.C., On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
  6. Molev A., Nazarov M., Olshanski G., Yangians and classical Lie algebras, Russian Math. Surveys 51 (1996), 205-282, arXiv:hep-th/9409025.
  7. Nazarov M., Yangian of the queer Lie superalgebra, Comm. Math. Phys. 208 (1999), 195-223, arXiv:math.QA/9902146.
  8. Nazarov M.L., Quantum Berezinian and the classical Capelli identity, Lett. Math. Phys. 21 (1991), 123-131.
  9. Tsymbaliuk A., Shuffle algebra realizations of type $A$ super Yangians and quantum affine superalgebras for all Cartan data, Lett. Math. Phys. 110 (2020), 2083-2111, arXiv:1909.13732.

Previous article  Next article  Contents of Volume 16 (2020)