|
SIGMA 16 (2020), 035, 10 pages arXiv:1904.07309
https://doi.org/10.3842/SIGMA.2020.035
Contribution to the Special Issue on Representation Theory and Integrable Systems in honor of Vitaly Tarasov on the 60th birthday and Alexander Varchenko on the 70th birthday
Duality for Knizhnik-Zamolodchikov and Dynamical Operators
Vitaly Tarasov ab and Filipp Uvarov a
a) Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, 402 North Blackford St, Indianapolis, IN 46202-3216, USA
b) St. Petersburg Branch of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia
Received February 25, 2020, in final form April 10, 2020; Published online April 25, 2020
Abstract
We consider the Knizhnik-Zamolodchikov and dynamical operators, both differential and difference, in the context of the
$(\mathfrak{gl}_{k}, \mathfrak{gl}_{n})$-duality for the space of polynomials in $kn$ anticommuting variables.
We show that the Knizhnik-Zamolodchikov and dynamical operators naturally exchange under the duality.
Key words: Knizhnik-Zamolodchikov operators; dynamical operators; the $(\mathfrak{gl}_{k}, \mathfrak{gl}_{n})$-duality.
pdf (365 kb)
tex (14 kb)
References
- Cheng S.-J., Wang W., Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, Vol. 144, Amer. Math. Soc., Providence, RI, 2012.
- Etingof P., Frenkel I., Kirillov A., Lectures on representation theory and Knizhnik-Zamolodchikov equations, Mathematical Surveys and Monographs, Vol. 58, Amer. Math. Soc., Providence, RI, 1998.
- Etingof P., Varchenko A., Dynamical Weyl groups and applications, Adv. Math. 167 (2002), 74-127, arXiv:math.QA/0011001.
- Felder G., Markov Y., Tarasov V., Varchenko A., Differential equations compatible with KZ equations, Math. Phys. Anal. Geom. 3 (2000), 139-177, arXiv:math.QA/0001184.
- Tarasov V., Varchenko A., Difference equations compatible with trigonometric KZ differential equations, Int. Math. Res. Not. 2000 (2000), 801-829, arXiv:math.QA/0002132.
- Tarasov V., Varchenko A., Duality for Knizhnik-Zamolodchikov and dynamical equations, Acta Appl. Math. 73 (2002), 141-154, arXiv:math.QA/0112005.
- Tarasov V., Varchenko A., Dynamical differential equations compatible with rational qKZ equations, Lett. Math. Phys. 71 (2005), 101-108, arXiv:math.QA/0403416.
- Toledano-Laredo V., The trigonometric Casimir connection of a simple Lie algebra, J. Algebra 329 (2011), 286-327, arXiv:1003.2017.
- Toledano-Laredo V., Yang Y., The elliptic Casimir connection of a simple Lie algebra, arXiv:1805.12261.
- Vicedo B., Young C., $(\mathfrak{gl}_M,\mathfrak{gl}_N)$-dualities in Gaudin models with irregular singularities, SIGMA 14 (2018), 040, 28 pages, arXiv:1710.08672.
|
|