|
SIGMA 21 (2025), 038, 65 pages arXiv:2402.09574
https://doi.org/10.3842/SIGMA.2025.038
1D Landau-Ginzburg Superpotential of Big Quantum Cohomology of $\mathbb{CP}^2$
Guilherme F. Almeida ab
a) Mannheim University, Mannheim, Germany
b) Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
Received February 16, 2024, in final form May 12, 2025; Published online May 30, 2025
Abstract
Using the inverse period map of the Gauss-Manin connection associated with $QH^{*}\bigl(\mathbb{CP}^2\bigr)$ and the Dubrovin construction of Landau-Ginzburg superpotential for Dubrovin-Frobenius manifolds, we construct a one-dimensional Landau-Ginzburg superpotential for the quantum cohomology of $\mathbb{CP}^2$. In the case of small quantum cohomology, the Landau-Ginzburg superpotential is expressed in terms of the cubic root of the $j$-invariant function. For big quantum cohomology, the one-dimensional Landau-Ginzburg superpotential is given by Taylor series expansions whose coefficients are expressed in terms of quasi-modular forms. Furthermore, we express the Landau-Ginzburg superpotential for both small and big quantum cohomology of $QH^{*}\bigl(\mathbb{CP}^2\bigr)$ in closed form as the composition of the Weierstrass $\wp$-function and the universal coverings of $\mathbb{C} \setminus \bigl(\mathbb{Z} \oplus {\rm e}^{\frac{\pi {\rm i}}{3}}\mathbb{Z}\bigr)$ and $\mathbb{C} \setminus (\mathbb{Z} \oplus z\mathbb{Z})$, respectively.
Key words: Dubrovin-Frobenius manifolds; big quantum cohomology; Landau-Ginzburg superpotential.
pdf (885 kb)
tex (62 kb)
References
- Almeida G.F., The differential geometry of the orbit space of extended affine Jacobi group $A_1$, SIGMA 17 (2021), 022, 39 pages, arXiv:1907.01436.
- Almeida G.F., The differential geometry of the orbit space of extended affine Jacobi group $A_ n$, J. Geom. Phys. 171 (2022), 104409, 52 pages, arXiv:2004.01780.
- Atkin A.O.L., Morain F., Elliptic curves and primality proving, Math. Comp. 61 (1993), 29-68.
- Barannikov S., Semi-infinite Hodge structures and mirror symmetry for projective spaces, arXiv:math.AG/0010157.
- Batchelor M., Brownlee P., Woods W., An equivariant covering map from the upper half plane to the complex plane minus a lattice, arXiv:1203.5261.
- Bertola M., Frobenius manifold structure on orbit space of Jacobi groups. I, Differential Geom. Appl. 13 (2000), 19-41.
- Bertola M., Frobenius manifold structure on orbit space of Jacobi groups. II, Differential Geom. Appl. 13 (2000), 213-233.
- Booher J., Modular curves and the class number one problem, available at https://www.math.canterbury.ac.nz/ j.booher/expos/class_number_one.pdf.
- Charalambides C.A., Enumerative combinatorics, Chapman & Hall/CRC, Boca Raton, FL, 2002.
- Cohn H., Approach to Markoff's minimal forms through modular functions, Ann. of Math. 61 (1955), 1-12.
- Di Francesco P., Itzykson C., Quantum intersection rings, in The Moduli Space of Curves, Progr. Math., Vol. 129, Birkhäuser, Boston, MA, 1995, 81-148, arXiv:hep-th/9412175.
- Diamond F., Shurman J., A first course in modular forms, Grad. Texts in Math., Vol. 228, Springer, New York, 2005.
- Doran C.F., Algebraic and geometric isomonodromic deformations, J. Differential Geom. 59 (2001), 33-85.
- Douai A., Sabbah C., Gauss-Manin systems, Brieskorn lattices and Frobenius structures. I, Ann. Inst. Fourier (Grenoble) 53 (2003), 1055-1116, arXiv:math.AG/0211352.
- Douai A., Sabbah C., Gauss-Manin systems, Brieskorn lattices and Frobenius structures. II, in Frobenius Manifolds, Aspects Math., Friedr. Vieweg, Wiesbaden, 2004, 1-18, arXiv:math.AG/0211353.
- Dubrovin B., Geometry of $2$D topological field theories, in Integrable Systems and Quantum Groups, Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348, arXiv:hep-th/9407018.
- Dubrovin B., Differential geometry of the space of orbits of a Coxeter group, in Surveys in Differential Geometry: Integral Systems, Surv. Differ. Geom., Vol. 4, International Press, Boston, MA, 1998, 181-211, arXiv:hep-th/9303152.
- Dubrovin B., Painlevé transcendents in two-dimensional topological field theory, in The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287-412, arXiv:math.AG/9803107.
- Dubrovin B., Zhang Y., Extended affine Weyl groups and Frobenius manifolds, Compositio Math. 111 (1998), 167-219, arXiv:hep-th/9611200.
- Dubrovin B., Zhang Y., Normal forms of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, arXiv:math.DG/0108160.
- Givental A., Homological geometry and mirror symmetry, in Proceedings of the International Congress of Mathematicians, Birkhäuser, Basel, 1995, 472-480.
- Givental A., A mirror theorem for toric complete intersections, in Topological Field Theory, Primitive Forms and Related Topics, Progr. Math., Vol. 160, Birkhäuser, Boston, MA, 1998, 141-175, arXiv:alg-geom/9701016.
- Givental A., A tutorial on quantum cohomology, in Symplectic Geometry and Topology, IAS/Park City Math. Ser., Vol. 7, American Mathematical Society, Providence, RI, 1999, 231-264.
- Golubev K.V., A differential equation on the cover function of the hexagonal lattice by the trivalent tree, J. Math. Sci. 209 (2015), 222-224.
- Guzzetti D., Inverse problem and monodromy data for three-dimensional Frobenius manifolds, Math. Phys. Anal. Geom. 4 (2001), 245-291.
- Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Math., Vol. 151, Cambridge University Press, Cambridge, 2002.
- Hertling C., Larabi K., Almeida G.F., Bilinear lattices, automorphism groups, vanishing cycles, monodromy groups, distinguished bases, braid group actions, and moduli spaces from upper triangular $2 \times 2$ and $3 \times 3$ matrices, in preparation.
- Kontsevich M., Manin Yu., Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), 525-562, arXiv:hep-th/9402147.
- Milanov T., The period map for quantum cohomology of $\mathbb{P}^2$, Adv. Math. 351 (2019), 804-869, arXiv:1706.04323.
- Shimada I., Lectures on Zariski van-Kampen theorem, Unpublished Lecture Notes, available at http://www.math.sci.hiroshima-u.ac.jp/ shimada/LectureNotes/LNZV.pdf.
- Zagier D., Elliptic modular forms and their applications, in The 1-2-3 of Modular Forms, Universitext, Springer, Berlin, 2008, 1-103.
- Zuo D., Frobenius manifolds and a new class of extended affine Weyl groups of A-type, Lett. Math. Phys. 110 (2020), 1903-1940, arXiv:1905.09470.
|
|