Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 037, 20 pages      arXiv:2411.00587      https://doi.org/10.3842/SIGMA.2025.037

The Stacey-Roberts Lemma for Banach Manifolds

Peter Kristel a and Alexander Schmeding b
a) Cyberagentur, Große Steinstraße 19, 06108 Halle (Saale), Germany
b) NTNU Trondheim, Alfred Getz' vei 1, Trondheim, Norway

Received November 27, 2024, in final form May 07, 2025; Published online May 18, 2025

Abstract
The Stacey-Roberts lemma states that a surjective submersion between finite-dimensional manifolds gives rise to a submersion on infinite-dimensional manifolds of smooth mappings by pushforward. This result is foundational for many constructions in infinite-dimensional differential geometry such as the construction of Lie groupoids of smooth mappings. We generalise the Stacey-Roberts lemma to Banach manifolds which admit smooth partitions of unity.The new approach also remedies an error in the original proof of the result for the purely finite-dimensional setting.

Key words: manifold of mappings; submersion; connection; Stacey-Roberts lemma; spray; anchored Banach bundle; Banach manifold.

pdf (464 kb)   tex (31 kb)  

References

  1. Amiri H., Glöckner H., Schmeding A., Lie groupoids of mappings taking values in a Lie groupoid, Arch. Math. (Brno) 56 (2020), 307-356, arXiv:1811.02888.
  2. Amiri H., Schmeding A., A differentiable monoid of smooth maps on Lie groupoids, J. Lie Theory 29 (2019), 1167-1192, arXiv:1706.04816.
  3. Amiri H., Schmeding A., Linking Lie groupoid representations and representations of infinite-dimensional Lie groups, Ann. Global Anal. Geom. 55 (2019), 749-775, arXiv:1805.03935.
  4. Anastasiei M., Banach Lie algebroids, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. 57 (2011), 409-416, arXiv:1003.1263.
  5. Bastiani A., Applications différentiables et variétés différentiables de dimension infinie, J. Anal. Math. 13 (1964), 1-114.
  6. Beltiţă D., Goliński T., Jakimowicz G., Pelletier F., Banach-Lie groupoids and generalized inversion, J. Funct. Anal. 276 (2019), 1528-1574, arXiv:1802.09430.
  7. Bonic R., Frampton J., Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877-898.
  8. Cabau P., Pelletier F., Almost Lie structures on an anchored Banach bundle, J. Geom. Phys. 62 (2012), 2147-2169, arXiv:1111.5908.
  9. Cabrera A., Mărcuţ I., Salazar M.A., On local integration of Lie brackets, J. Reine Angew. Math. 760 (2020), 267-293, arXiv:1703.04411.
  10. Celledoni E., Eidnes S., Schmeding A., Shape analysis on homogeneous spaces: a generalised SRVT framework, in Computation and Combinatorics in Dynamics, Stochastics and Control, Abel Symp., Vol. 13, Springer, Cham, 2018, 187-220, arXiv:1704.01471.
  11. Chen B., Du C.-Y., Liao A.-L., Banach orbifold structure on groupoids of morphisms of orbifolds, Differential Geom. Appl. 87 (2023), 101975, 41 pages.
  12. Crainic M., Fernandes R.L., Integrability of Lie brackets, Ann. of Math. 157 (2003), 575-620, arXiv:math.DG/0105033.
  13. del Hoyo M., Complete connections on fiber bundles, Indag. Math. (N.S.) 27 (2016), 985-990, arXiv:1512.03847.
  14. Elǐasson H.I., Geometry of manifolds of maps, J. Differential Geometry 1 (1967), 169-194.
  15. Glöckner H., Fundamentals of submersions and immersions between infinite-dimensional manifolds, arXiv:1502.05795.
  16. Glöckner H., Lie groups over non-discrete topological fields, arXiv:math.GR/0408008.
  17. Glöckner H., Schmeding A., Manifolds of mappings on Cartesian products, Ann. Global Anal. Geom. 61 (2022), 359-398, arXiv:2109.01804.
  18. Goliński T., Jakimowicz G., Sliżewska A., Banach Lie groupoid of partial isometries over the restricted Grassmannian, Anal. Math. Phys. 15 (2025), 27, 14 pages, arXiv:2404.12847.
  19. Hamilton R.S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222.
  20. Hekmati P., Mickelsson J., Projective families of Dirac operators on a Banach Lie groupoid, J. Noncommut. Geom. 10 (2016), 1-28, arXiv:1404.1754.
  21. Hjelle E.O., Schmeding A., Strong topologies for spaces of smooth maps with infinite-dimensional target, Expo. Math. 35 (2017), 13-53, arXiv:1603.09127.
  22. Klingenberg W.P.A., Riemannian geometry, 2nd ed., De Gruyter Stud. Math., Vol. 1, Walter de Gruyter & Co., Berlin, 1995.
  23. Lang S., Fundamentals of differential geometry, 2nd ed., Grad. Texts in Math., Vol. 191, Springer, New York, 2001.
  24. Laurent-Gengoux C., Wagemann F., Lie rackoids integrating Courant algebroids, Ann. Global Anal. Geom. 57 (2020), 225-256, arXiv:1807.05891.
  25. Michor P.W., Manifolds of differentiable mappings, Shiva Math. Ser., Vol. 3, Shiva Publishing Ltd., Nantwich, 1980.
  26. Michor P.W., Manifolds of mappings for continuum mechanics, in Geometric Continuum Mechanics, Adv. Mech. Math., Vol. 43, Birkhäuser, Cham, 2020, 3-75, arXiv:1909.00445.
  27. Roberts D.M., Vozzo R.F., The smooth Hom-stack of an orbifold, in 2016 MATRIX Annals, MATRIX Book Ser., Vol. 1, Springer, Cham, 2018, 43-47.
  28. Roberts D.M., Vozzo R.F., Smooth loop stacks of differentiable stacks and gerbes, Cah. Topol. Géom. Différ. Catég. 59 (2018), 95-141, arXiv:1602.07973.
  29. Schmeding A., The Lie group of vertical bisections of a regular Lie groupoid, Forum Math. 32 (2020), 479-489, arXiv:1905.04969.
  30. Schmeding A., An introduction to infinite-dimensional differential geometry, Cambridge Stud. Adv. Math., Vol. 202, Cambridge University Press, Cambridge, 2022.
  31. Stacey A., Yet more smooth mapping spaces and their smoothly local properties, arXiv:1301.5493.
  32. Steffens P., Representability of elliptic moduli problems in derived $C^{\infty}$-geometry, arXiv:2404.07931.

Previous article  Next article  Contents of Volume 21 (2025)