|
SIGMA 21 (2025), 037, 20 pages arXiv:2411.00587
https://doi.org/10.3842/SIGMA.2025.037
The Stacey-Roberts Lemma for Banach Manifolds
Peter Kristel a and Alexander Schmeding b
a) Cyberagentur, Große Steinstraße 19, 06108 Halle (Saale), Germany
b) NTNU Trondheim, Alfred Getz' vei 1, Trondheim, Norway
Received November 27, 2024, in final form May 07, 2025; Published online May 18, 2025
Abstract
The Stacey-Roberts lemma states that a surjective submersion between finite-dimensional manifolds gives rise to a submersion on infinite-dimensional manifolds of smooth mappings by pushforward. This result is foundational for many constructions in infinite-dimensional differential geometry such as the construction of Lie groupoids of smooth mappings. We generalise the Stacey-Roberts lemma to Banach manifolds which admit smooth partitions of unity.The new approach also remedies an error in the original proof of the result for the purely finite-dimensional setting.
Key words: manifold of mappings; submersion; connection; Stacey-Roberts lemma; spray; anchored Banach bundle; Banach manifold.
pdf (464 kb)
tex (31 kb)
References
- Amiri H., Glöckner H., Schmeding A., Lie groupoids of mappings taking values in a Lie groupoid, Arch. Math. (Brno) 56 (2020), 307-356, arXiv:1811.02888.
- Amiri H., Schmeding A., A differentiable monoid of smooth maps on Lie groupoids, J. Lie Theory 29 (2019), 1167-1192, arXiv:1706.04816.
- Amiri H., Schmeding A., Linking Lie groupoid representations and representations of infinite-dimensional Lie groups, Ann. Global Anal. Geom. 55 (2019), 749-775, arXiv:1805.03935.
- Anastasiei M., Banach Lie algebroids, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. 57 (2011), 409-416, arXiv:1003.1263.
- Bastiani A., Applications différentiables et variétés différentiables de dimension infinie, J. Anal. Math. 13 (1964), 1-114.
- Beltiţă D., Goliński T., Jakimowicz G., Pelletier F., Banach-Lie groupoids and generalized inversion, J. Funct. Anal. 276 (2019), 1528-1574, arXiv:1802.09430.
- Bonic R., Frampton J., Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877-898.
- Cabau P., Pelletier F., Almost Lie structures on an anchored Banach bundle, J. Geom. Phys. 62 (2012), 2147-2169, arXiv:1111.5908.
- Cabrera A., Mărcuţ I., Salazar M.A., On local integration of Lie brackets, J. Reine Angew. Math. 760 (2020), 267-293, arXiv:1703.04411.
- Celledoni E., Eidnes S., Schmeding A., Shape analysis on homogeneous spaces: a generalised SRVT framework, in Computation and Combinatorics in Dynamics, Stochastics and Control, Abel Symp., Vol. 13, Springer, Cham, 2018, 187-220, arXiv:1704.01471.
- Chen B., Du C.-Y., Liao A.-L., Banach orbifold structure on groupoids of morphisms of orbifolds, Differential Geom. Appl. 87 (2023), 101975, 41 pages.
- Crainic M., Fernandes R.L., Integrability of Lie brackets, Ann. of Math. 157 (2003), 575-620, arXiv:math.DG/0105033.
- del Hoyo M., Complete connections on fiber bundles, Indag. Math. (N.S.) 27 (2016), 985-990, arXiv:1512.03847.
- Elǐasson H.I., Geometry of manifolds of maps, J. Differential Geometry 1 (1967), 169-194.
- Glöckner H., Fundamentals of submersions and immersions between infinite-dimensional manifolds, arXiv:1502.05795.
- Glöckner H., Lie groups over non-discrete topological fields, arXiv:math.GR/0408008.
- Glöckner H., Schmeding A., Manifolds of mappings on Cartesian products, Ann. Global Anal. Geom. 61 (2022), 359-398, arXiv:2109.01804.
- Goliński T., Jakimowicz G., Sliżewska A., Banach Lie groupoid of partial isometries over the restricted Grassmannian, Anal. Math. Phys. 15 (2025), 27, 14 pages, arXiv:2404.12847.
- Hamilton R.S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222.
- Hekmati P., Mickelsson J., Projective families of Dirac operators on a Banach Lie groupoid, J. Noncommut. Geom. 10 (2016), 1-28, arXiv:1404.1754.
- Hjelle E.O., Schmeding A., Strong topologies for spaces of smooth maps with infinite-dimensional target, Expo. Math. 35 (2017), 13-53, arXiv:1603.09127.
- Klingenberg W.P.A., Riemannian geometry, 2nd ed., De Gruyter Stud. Math., Vol. 1, Walter de Gruyter & Co., Berlin, 1995.
- Lang S., Fundamentals of differential geometry, 2nd ed., Grad. Texts in Math., Vol. 191, Springer, New York, 2001.
- Laurent-Gengoux C., Wagemann F., Lie rackoids integrating Courant algebroids, Ann. Global Anal. Geom. 57 (2020), 225-256, arXiv:1807.05891.
- Michor P.W., Manifolds of differentiable mappings, Shiva Math. Ser., Vol. 3, Shiva Publishing Ltd., Nantwich, 1980.
- Michor P.W., Manifolds of mappings for continuum mechanics, in Geometric Continuum Mechanics, Adv. Mech. Math., Vol. 43, Birkhäuser, Cham, 2020, 3-75, arXiv:1909.00445.
- Roberts D.M., Vozzo R.F., The smooth Hom-stack of an orbifold, in 2016 MATRIX Annals, MATRIX Book Ser., Vol. 1, Springer, Cham, 2018, 43-47.
- Roberts D.M., Vozzo R.F., Smooth loop stacks of differentiable stacks and gerbes, Cah. Topol. Géom. Différ. Catég. 59 (2018), 95-141, arXiv:1602.07973.
- Schmeding A., The Lie group of vertical bisections of a regular Lie groupoid, Forum Math. 32 (2020), 479-489, arXiv:1905.04969.
- Schmeding A., An introduction to infinite-dimensional differential geometry, Cambridge Stud. Adv. Math., Vol. 202, Cambridge University Press, Cambridge, 2022.
- Stacey A., Yet more smooth mapping spaces and their smoothly local properties, arXiv:1301.5493.
- Steffens P., Representability of elliptic moduli problems in derived $C^{\infty}$-geometry, arXiv:2404.07931.
|
|