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1 Introduction

Kazama–Suzuki coset construction and vertex algebra reformulation. In the pa-
per [24], Kazama and Suzuki described a construction of the N = 2 superconformal algebra,
including N = 2 superconformal minimal models, using the coset space method [20]. They
determined under which conditions the N = 1 super-GKO coset construction could be extended
to the N = 2 superconformal algebra.

In an effort to better understand the highest weight-type modules for the N = 2 algebra,
Feigin, Semikhatov and Tipunin showed that certain categories of modules of the N = 2 su-
perconformal algebra LN=2

c and affine vertex algebra Ls(sl2) are equivalent by constructing the
so-called Kazama–Suzuki (KS) and inverse Kazama–Suzuki mapping [18].

The first named author interpreted in [1] the Kazama–Suzuki [24] and inverse Kazama–Suzuki
mapping [18] in the language of vertex algebras as embeddings between certain simple vertex
operator algebras (VOAs). In vertex algebra terms, the N = 2 algebra LN=2

c is realized as
a coset Com(H, Ls(sl2)⊗F1), where H is a certain Heisenberg subalgebra and F1 is a lattice
vertex algebra. As a consequence of the duality, he obtained a complete classification of irre-
ducible LN=2

cm -modules for admissible m. The Kazama–Suzuki duality was used in [2] for the
proof of rationality and regularity of LN=2

cm for m ∈ Z, and determination of the fusion rules.

This paper is a contribution to the Special Issue on Recent Advances in Vertex Operator Algebras in honor
of James Lepowsky. The full collection is available at https://www.emis.de/journals/SIGMA/Lepowsky.html
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Extension of this work appeared recently in [12], where the authors studied Kazama–Suzuki
type of dualities between subregular W-algebras and principal W-superalgebras.

Assume that U , V are vertex (super)algebras. We say that V is the Kazama–Suzuki dual
of U if there exist injective homomorphisms of vertex superalgebras

φ1 : V → U ⊗F1, φ2 : U → V ⊗F−1, (1.1)

so that V ∼= Com(MH1(1), U ⊗F1), U ∼= Com(MH2(1), V ⊗F−1), where MH1(1) (resp. MH2(1))
is a rank one Heisenberg vertex subalgebra of U ⊗F1 (resp. V ⊗F−1) and F±1 are lattice vertex
superalgebras associated to rank one lattice L = Zφ±,

〈
φ±, φ±〉 = ±1 (cf. Section 2.1).

An immediate benefit of this type of duality is that it provides us with an insight into the
representation theory of the dual algebra, i.e., the classification and realization of modules for
one algebra can be obtained from its dual. It is therefore particularly useful to find dual pairs
of algebras where the representation theory of one of them is better understood, and use it to
study the representations of the other one. An important question is how to find and classify
instances of this type of duality.

Classifying Kazama–Suzuki duality between Wk(sl4, fsub) and LN=2
c . In this paper,

we classify all possible occurrences of Kazama–Suzuki duality between theN = 2 superconformal
algebra LN=2

c and the subregular algebra W-algebra Wk(sl4, fsub).
In general, in order for two algebras to be in Kazama–Suzuki type duality, their Heisenberg

cosets need to coincide. Recall that LN=2
c and Ls(sl2) are in Kazama–Suzuki duality for c = 3s

s+2
(cf. [1]), hence their coset subalgebras will coincide. That means that a necessary condition for
Wk(sl4, fsub) and L

N=2
c to be in duality is that the coset algebra Ck = Com(MH(1),Wk(sl4, fsub))

of Wk(sl4, fsub) and the parafermion algebra Ns(sl2) = Com(MH(1), Ls(sl2)) of Ls(sl2) coincide,
where MH(1) denotes the rank one Heisenberg vertex algebra generated by H.

To determine at which levels k, s the coset algebras Ck andNs(sl2) coincide, we rely on the fact
that these algebras have a realization as certain quotients of the universal two-parameter vertex
algebraW(c, λ) from [27]. These quotients are parametrized by certain rational curves, and there
is a simple criterion from [27] which determines when they are isomorphic (cf. Section 3.1). This
gives us a list of potential candidates for KS duality.

However, it is easy to observe that for Wk(sl4, fsub) and L
N=2
c to be in duality, i.e., for there

to exist an embedding of type (1.1), (G+)2 = G+
(−1)G

+ needs to be zero in Wk(sl4, fsub). Indeed,
G+⊗ eφ should be proportional to the fermionic generator of the N = 2 superalgebra, which we
denote by E, and for which we need to have that E(0)E = 0. This leads to the conclusion that

0 = (G+ ⊗ eφ)(0)(G
+ ⊗ eφ) = (G+)2 ⊗ e2φ,

and therefore (G+)2 = 0. In other words, either G+ or (G+)2 needs to be a singular vector
in Wk(sl4, fsub).

Applying these two necessary conditions leaves us with two possible candidates: k = −1,
c = −15 and k = −7

3 , c = 1. We construct explicit Kazama–Suzuki embeddings in those two
cases, proving the following.

Theorem 1.1. The vertex algebras LN=2
c and Wk(sl4, fsub) are in Kazama–Suzuki duality if

and only if k = −1 and c = −15 or k = −7
3 and c = 1.

According to a result of [12], the subregular and principal W-algebras Wk1(sln, fsub) and
Wk2(sl(1|n), fpr) are in KS duality for k1, k2 ∈ C satisfying the relation

(k1 + n)(k2 + n− 1) = 1.

For n = 2, this result recovers the ‘original’ Kazama–Suzuki duality of LN=2
c and Ls(sl2), since

Wk′(sl(1|2), fpr) is exactly the N = 2 superconformal algebra of central charge c = −3(1+ 2k′).
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The coset algebras of W−n+1(sln+2, fsub) and W−n+1/3(sln, fsub) coincide by a result of [14]
(see also [27]). Using the duality of [12], it follows that the coset algebras of W4−n(sl(1|n), fpr)
and W−n+1(sln+2, fsub) are also isomorphic. Since the necessary condition for W4−n(sl(1|n), fpr)
and W−n+1(sln+2, fsub) to be in Kazama–Suzuki duality is fulfilled, we conjecture that the same
relation holds more generally.

Conjecture 1.2. Let k1 = −n + 4 and k2 = −n + 1. Then there is a Kazama–Suzuki type
duality between Wk1(sl(1|n), fpr) and Wk2(sln+2, fsub).

Our result above states thatWk1(sl(1|2), fpr) andWk2(sl4, fsub) are in Kazama–Suzuki duality
for k1 = 2, k2 = −1, therefore being a special case of this conjecture for n = 2.

Constructing Kazama–Suzuki duality for subregular W-algebras. Let g be a simple
finite-dimensional Lie algebra and k ∈ C. Let Wk(g, fsub) be the (universal) subregular W-
algebra corresponding to the subregular nilpotent element fsub (see [23]) and Wk(g, fsub) its
simple quotient. The OPEs for subregular W-algebras are not known in general, but for g = sln,
it was proved in [19] that Wk(g, fsub) are isomorphic to the Feigin–Semikhatov algebras W

(2)
n

(cf. [17]). For n = 2, Wk(sln, fsub) is isomorphic to the affine vertex algebra V k(sl2), while
for n = 3 it is the Bershadsky–Polyakov algebra Wk(sl3, fsub).

In the paper [5], we showed that the affine vertex superalgebra Lk′(osp(1|2)) is the Kazama–
Suzuki dual of the Bershadsky–Polyakov algebra Wk(sl3, fsub) for k′ = −5

4 and k = 1. More
precisely, there exists an embedding of Wk(sl3, fsub) into the tensor product of the affine ver-
tex superalgebra Lk′(osp(1|2)) at level k′ = −5

4 and the Clifford vertex superalgebra F (which
is, by the boson-fermion correspondence, isomorphic to the lattice vertex superalgebra F1);
and the corresponding inverse embedding. In [4], it was proved that L−5/4(osp(1|2)) can be
realized as the vertex superalgebra F 1/2 ⊗ Π1/2(0), where Π1/2(0) is a lattice type vertex al-
gebra, and F 1/2 is a Clifford vertex superalgebra. Using this result, and the fact that at
level k′ = −5

4 there is a conformal embedding of Lk′(sl2) into Lk′(osp(1|2)) (cf. [8]), we obtained
a realization of the Bershadsky–Polyakov algebra Wk(sl3, fsub) and an explicit construction of
irreducible Wk(sl3, fsub)-modules. Relaxed modules for Lk′(osp(1|2)) are mapped to the or-
dinary Wk(sl3, fsub)-modules, for which one expects it is easier to obtain the tensor category
structure and calculate the fusion rules.

In this paper, we construct explicit Kazama–Suzuki type embeddings between the subregular
W-algebra Wk(sl4, fsub) and the N = 2 superconformal algebra LN=2

c for k = −1, c = −15, thus
obtaining a realization of Wk(sl4, fsub) and its irreducible modules.

We show (cf. Propositions 4.1 and 4.4) the following.

Theorem 1.3. There exist embeddings of vertex superalgebras

Φ: LN=2
c=−15 → W−1(sl4, fsub)⊗F−1, Φinv : W−1(sl4, fsub) → LN=2

c=−15 ⊗F1

such that

LN=2
c=−15

∼= Com(MH⊥(1),W−1(sl4, fsub)⊗F−1),

W−1(sl4, fsub) ∼= Com
(
MH(1), L

N=2
c=−15 ⊗F1

)
,

where MH⊥(1) and MH(1) are Heisenberg vertex algebras.

Classification of irreducible Wk(sl(4), fsub)-modules. As a consequence of the dual-
ity, we are able to construct a realization of irreducible Wk=−1(sl4, fsub)-modules as modules
for LN=2

c ⊗F1. Furthermore, the highest weight Wk(sl4, fsub)-modules are parameterized by
zeroes of certain curves (cf. Theorem 5.8).
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Let L(x, y, z) be the irreducible highest weightWk(sl4, fsub)-module, generated by the highest
weight vector vx,y,z. An important property here is that (G+)2 is a singular vector in W−1(sl4,
fsub) (cf. Lemma 2.2), hence the top space L(x, y, z)top can be either 1- or 2-dimensional. Let

S1 =

{(
−h
4
, q +

h2

8
,− 1

25
(h+ 5)

(
h2 − 5h+ 15q2

))
, (h, q) ∈ C2

}
,

S2 =

{(
−h−5

4
, q +

h2 − 2h+ 5

8
,− 1

25
(h+ 5)

(
h2 − 5h+ 15q2

))
, (h, q) ∈ C2

}
.

We prove the following statement.

Theorem 1.4. The set {L(x, y, z), (x, y, z) ∈ S1 ∪ S2} provides a complete list of irreducible,
highest weight Wk=−1(sl4, fsub)-modules. Moreover, dimL(x, y, z)top = 1 ⇐⇒ (x, y, z) ∈ S1.

Setup.

� We adopt the following notation for the vertex operator corresponding to the state a

Y (a, z) =
∑
i∈Z

a(i)z
−i−1.

� The Zhu algebra associated to the vertex operator algebra V with the Virasoro vector ω
will be denoted with Aω(V ).

� Let F±1 be the lattice vertex superalgebras associated to the lattice Z
√
±1 defined in

Section 2.1.

� Let Mα(1) denote the rank one Heisenberg vertex algebra generated by a Heisenberg
vector α.

� Let Wk(sln, fsub) be the (universal) subregular W-algebra corresponding to the subregular
nilpotent element fsub and g = sln, and Wk(sln, fsub) its simple quotient.

� Ls(sl2) is affine Lie algebra of sl2 and Ns(sl2) its parafermion (coset) subalgebra.

� The universal N = 2 superconformal vertex algebra of central charge c is denoted by V N=2
c

and LN=2
c is its simple quotient.

2 Preliminaries

2.1 Lattice vertex superalgebras F±1

Consider a rank one lattice L = Zφ±,
〈
φ±, φ±〉 = ±1. Let F1 (resp. F−1) be the associ-

ated vertex algebra. These vertex superalgebras are used for the construction of the inverse of
Kazama–Suzuki functor in the context of duality between affine ŝl2 and N = 2 superconformal
algebra (cf. [1, 2, 18]).

As a vector space F±1 = C[L]⊗Mφ±(1), where C[L] is a group algebra of L, and Mφ±(1) the
Heisenberg vertex algebra generated by the Heisenberg field φ±(z) =

∑
n∈Z φ

±(n)z−n−1 such
that [

φ±(n), φ±(m)
]
= ±nδn+m,0.

The vertex algebras F±1 are weakly generated by eφ
±
and e−φ

±
. Moreover, F±1 is a simple

vertex superalgebra and a completely reducible Mφ±(1)-module isomorphic to

F±1
∼=
⊕
m∈Z

Fm
±1,

where Fm
±1 is an irreducible Mφ±(1)-module generated by emφ

±
.
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2.2 N = 2 superconformal algebra

The universal N = 2 superconformal vertex algebra V N=2
c is generated by even fields T (z), H(z)

and odd fields E(z), F (z) satisfying the following OPEs

T (z)T (w) ∼
c
2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
, H(x)H(y) ∼

c
3

(z − w)2
,

T (z)H(w) ∼ H(w)

(z − w)2
+
∂H(w)

z − w
,

T (z)E(w) ∼
3
2E(w)

(z − w)2
+
∂E(w)

z − w
, T (z)F (w) ∼

3
2F (w)

(z − w)2
+
∂F (w)

z − w
,

E(z)F (w) ∼
2c
3

(z − w)3
+

2H(w)

(z − w)2
+

2T (w) + ∂H(w)

z − w
,

F (z)E(w) ∼
2c
3

(z − w)3
− 2H(w)

(z − w)2
+

2T (w)− ∂H(w)

z − w
,

H(z)E(w) ∼ E(w)

z − w
, H(z)F (w) ∼ − F (w)

z − w
, E(z)E(w) ∼ 0, F (z)F (w) ∼ 0.

Set

T (z) =
∑
i∈Z

T (i)z−i−2, H(z) =
∑
i∈Z

H(i)z−i−1,

E(z) =
∑
i∈Z

E(i)z
−i−1 =

∑
i∈Z

E

(
i+

1

2

)
z−i−2,

F (z) =
∑
i∈Z

F(i)z
−i−1 =

∑
i∈Z

F

(
i+

1

2

)
z−i−2.

Then the components of these fields satisfy the commutation relation for the N = 2 supercon-
formal algebra with basis {T (n), H(n), E(r), F (r)}, n ∈ Z, r ∈ 1

2 + Z,

[T (m), T (n)] = (m− n)T (m+ n) +
c

12

(
m3 −m

)
δm+n,0, [H(m), H(n)] =

c

3
mδm+n,0,

[T (m), H(n)] = −nH(n+m), [T (m), E(r)] =

(
1

2
m− r

)
E(m+ r),

[T (m), F (r)] =

(
1

2
m− r

)
F (m+ r),

[H(m), E(r)] = E(m+ r), [H(m), F (r)] = −F (m+ r),

{E(r), F (s)} = 2T (r + s) + (r − s)H(r + s) +
c

3

(
r2 − 1

4

)
δr+s,0,

{E(r), E(s)} = {F (r), F (s)} = 0.

Let LN=2
c be the simple quotient of V N=2

c .

2.2.1 Spectral flow automorphisms

The N = 2 superconformal algebra V N=2
c admits a family of spectral flow automorphisms σℓ,

ℓ ∈ Z, given by

σℓ(T (n)) = T (n)− ℓH(n) +
1

6
ℓ2δn,0c1, σl(H(n)) = H(n) +

1

3
ℓδn,0c1,

σℓ(E(r)) = E(r − ℓ), σℓ(F (r)) = F (r + ℓ), σℓ(1) = 1.
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Define

∆(−H, z) = z−H(0) exp

( ∞∑
k=1

(−1)k+1−H(k)

kzk

)
.

For any V N=2
c -module (M,YM (·, z)) and n ∈ Z, σn(M) is again a LN=2

c -module with vertex
operator structure given by Yσn(M)(·, z)) := YM (∆(−nH, z)·, z)).

2.2.2 Twisted highest weight conditions

Let us define a new Virasoro vector T̃ = T + ∂H. Then E(z) is primary field of conformal
weight 1/2 and F (z) of conformal weight 5/2 with respect to T̃ . With respect to the new grading
operator T̃ (0) we shall also need to introduce twisted highest weight conditions. Let (h, q) ∈ C2.
Let Mc[h, q] be the Verma module of the N = 2 superconformal algebra of central charge c
generated by the (twisted) highest weight vector vh,q such that for n ∈ Z≥0 (cf. [18]):

H(n)vh,q = δn,0hvh,q, T (n)vh,q = δn,0qvh,q,

E

(
n− 1

2

)
vh,q = F

(
n+

3

2

)
vh,q = 0.

Let Lc[h, q] be the irreducible quotient ofMc[h, q]. Then Lc[h, q] is an irreducible V N=2
c -module.

2.2.3 Parafermionic subalgebras

Let Nc = Com
(
MH(1), L

N=2
c

)
be the parafermionic subalgebra of LN=2

c . Note that using the
Kazama–Suzuki duality between LN=2

c and Lk(sl2) (cf. [1, 18]), we have that Nc = Ns(sl2),
where c = 3s

s+2 and Ns(sl2) is the parafermion vertex subalgebra of Ls(sl2) (cf. [15]). If c /∈
{0, 1, 32 ,−6,−9}, then the vertex algebra Nc is (weakly) generated by the fields T⊥ and WN=2

c

(cf. [10, 15]), where

T⊥ = T − 3

2c
:HH:, WN=2

c = ν

(
:EF :− ∂T − 6

c
:TH:− c− 9

3c
∂2H +

6

c2
:H3:

)
,

and ν ∈ C is a normalization factor. In particular, Nc=−15 is weakly generated by T⊥ and
WN=2
c=−15.

For other central charges, we have the following:

� If c ∈ {0, 1}, then Nc = C1 (cf. [15]).

� Nc=3/2 is the simple Virasoro vertex algebra of central charge c = 1
2 .

� Nc=−6 = N−4/3(sl2) is the singlet vertex algebra M(3) generated by the Virasoro field and
primary field of conformal weight 5 (cf. [3]).

� Nc=−9 = N−3/2(sl2) is a direct sum ofW−5/2(sl3, fpr)-modules (cf. [6]). As a vertex algebra
it is generated by W−5/2(sl3, fpr) and its simple module of conformal weight 4.

Let Aω(V ) be the Zhu algebra associated to the VOA V with the Virasoro vector ω, and
let [v] be the image of v ∈ V under the mapping V 7→ Aω(V ).

One can show that the Zhu’s algebra A
(
V N=2
c

)
(cf. [1]) is isomorphic to C[x, y]; i.e., there is

isomorphism f : A
(
V N=2
c

)
→ C[x1, y1] such that [H(−1)1] 7→ x1, [T (−2)1] 7→ y1.
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2.3 Kazama–Suzuki duality

In this subsection, we will define a duality of vertex algebras which is motivated by the duality
between N = 2 superconformal vertex algebra and affine vertex algebra Lk(sl2).

Recall first that if S is a vertex subalgebra of V , we have the commutant subalgebra of V
(cf. [25])

Com(S, V ) := {v ∈ V | anv = 0, ∀a ∈ S, ∀n ∈ Z≥0}.

Assume that U , V are vertex superalgebras. We say that V is the Kazama–Suzuki dual
of U if there exist injective homomorphisms of vertex superalgebras φ1 : V → U ⊗F1, φ2 : U →
V ⊗ F−1, so that V ∼= Com(MH1(1), U ⊗F1), U ∼= Com(MH2(1), V ⊗F−1), where MH1(1)
(resp. MH2(1)) is a rank one Heisenberg vertex subalgebra of U ⊗F1 (resp. V ⊗F−1), and F±1

are lattice vertex superalgebras defined in Section 2.1.

2.4 Subregular W-algebras Wk(sl4, fsub)

Let g be a simple finite-dimensional Lie algebra and k ∈ C. Let Wk(g, fsub) be the (universal)
subregular W-algebra corresponding to the subregular nilpotent element fsub ([23]).

In the case where g = sln, it was proved in [19] that Wk(g, fsub) is isomorphic to the Feigin–
Semikhatov algebra W

(2)
n (cf. [17]), using a certain free field realization of Wk(g, fsub).

In this paper, we will only consider the case g = sl4. The vertex algebra Wk(sl4, fsub) has
central charge

ck = −(3k + 8)(8k + 17)

(k + 4)
,

and it is freely generated by fields J(z), L(z), G+(z), G−(z),W (z). The explicit OPEs are known
(see [13, 17]) and are written in Appendix B. In this paper, we shall assume that the gradation
on Wk(sl4, fsub) is defined by the shifted Virasoro field L̃ = L + ∂J . Then G+ (resp. G−) is
a primary field of conformal weight 1 (resp. 3). We set

J(z) =
∑
n∈Z

J(n)z−n−1, L(z) =
∑
n∈Z

L(n)z−n−2, G+(z) =
∑
n∈Z

G+(n)z−n−1,

G−(z) =
∑
n∈Z

G−(n)z−n−3, W (z) =
∑
n∈Z

W (n)z−n−3.

The Zhu algebra A
(
Wk(sl4, fsub)

)
is generated by

E = [G+], F = [G−], X = [J ], Y = [L], Z = [W ].

The subregular W-algebra Wk(sl4, fsub) admits a family of spectral flow automorphisms ψm,
m ∈ Z, given by

ψm(J(n)) = J(n)− m(3k + 8)

4
δn,01, ψm(L(n)) = L(n)−mJ(n) +

m2(3k + 8)

8
δn,01,

ψm(G+(n)) = G+(n−m), ψm(G−(n)) = G−(n+m).

Define

∆(−J, z) = z−J(0) exp

( ∞∑
k=1

(−1)k+1−J(k)
kzk

)
.

For any Wk(sl4, fsub)-module (M,YM (·, z)) and n ∈ Z, ψm(M) is again a Wk(sl4, fsub)-
module with vertex operator structure given by Yψm(M)(·, z)) := YM (∆(−mJ, z)·, z)).
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2.5 Singular vectors in Wk(sln, fsub)

Formulas for singular vectors in Wk(sln, fsub) are not known in general; however, the following
criterion from [16] tells us when (G+)s is singular.

Proposition 2.1 ([16]). The vector (G+)s, s > 0, is singular in Wk(sln, fsub) if and only
if i(k + n− 1) = s for some i ∈ {1, . . . , n− 1}.

Using the above criterion, it is easy to observe the following.

Lemma 2.2.

(i) For k = −n+ 3, (G+)2 is singular in Wk(sln, fsub) but G
+ is not.

(ii) For k = −n+ 4, (G+)3 is singular in Wk(sln, fsub) but (G
+)2 is not.

Proof. (i) Assume that (G+)2 is singular in Wk(sln), fsub) but G
+ is not. Then from Proposi-

tion 2.1 it follows that there exists i ∈ {1, . . . , n− 1} such that i(k + n− 1) = 2 and there does
not exist i ∈ {1, . . . , n − 1} such that i(k + n − 1) = 1. Let now k = −n + 3. Then i = 1 is
solution of the first equation, and the second equation does not have solutions. This proves (i).
Analogous reasoning yields (ii). ■

2.6 Highest weight Wk(sl4, fsub)-modules

Definition 2.3. Let (x, y, z) ∈ C3. We say that a module M is a highest weight Wk(sl4, fsub)-
module of highest weight (x, y, z) if there exist a highest weight vector vx,y,z such that

J(0)vx,y,z = xvx,y,z, J(n)vx,y,z = 0 for n > 0,

L(0)vx,y,z = yvx,y,z, L(n)vx,y,z = 0 for n > 0,

W (0)vx,y,z = zvx,y,z, W (n)vx,y,z = 0 for n > 0,

G+(n− 1)vx,y,z = G−(n)vx,y,z = 0 for n ≥ 1,

and M = Wk(sl4, fsub).vx,y,z.

If an irreducible highest weight module of highest weight (x, y, z) exists, it is unique up to
equivalence, and we denote it by L(x, y, z). It is Z≥0 graded with respect to L̃(0) and its top
space

L(x, y, z)top =
{
v ∈ L(x, y, z) | L̃(0)v = ỹv

}
is spanned by

{
G−(0)ivx,y,z, i ≥ 0

}
.

Remark 2.4. Note that L̃(0)|L(x,y,z)top ≡ ỹ Id, where ỹ = y − x. But since all OPE formulas
in Appendix B are expressed in terms of the original Virasoro field L we choose to express all
highest weight with respect to (J(0), L(0),W (0)). One could also easily rewrite highest weights
with respect to

(
J(0), L̃(0),W (0)

)
.

Remark 2.5. One can show that for each (x, y, z) ∈ C3, there exist an irreducible highest
weight Wk(sl4, fsub)-module with these highest weights using the results of [23] and/or inverse
reduction construction from [16]. But in the current paper we do not need this general result. In
what follows, we shall construct highest weight modules in some special cases which are relevant
to KS duality.
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3 Classification of Kazama–Suzuki duality between
the N = 2 superconformal algebra LN=2

c

and the subregular W-algebra Wk(sl4, fsub)

In this section, we classify all possible occurrences of Kazama–Suzuki duality between the N = 2
superconformal algebra LN=2

c and the subregular algebra W-algebra Wk(sl4, fsub).
In order for those two algebras to be in KS duality, two necessary conditions need to be

fulfilled: (i) coset subalgebras need to coincide and (ii) (G+)2 needs to be a singular vector
in Wk(sl4, fsub).

To check the first condition, we use a criterion from [27], which determines when certain
quotients of the universal two-parameter vertex algebra W(c, λ) coincide (cf. Section 3.1). For
the second criterion, we use Lemma 2.2.

3.1 Universal two-parameter vertex algebra W(c, λ)

The universal two-parameter vertex algebra W(c, λ) was constructed in [27]. It is defined over
the ring C[c, λ] and freely generated by Virasoro field L of central charge c and strong genera-
tors

{
W i | i ≥ 3

}
of weight i ∈ Z. W(c, λ) is a simple vertex algebra over C[c, λ].

Let I ⊆ C[c, λ] be an ideal. Then we have the quotient vertex algebra

WI(c, λ) = W(c, λ)/I · W(c, λ).

The variety V (I) ⊆ C2 is called a truncation curve for WI(c, λ).
Many important examples of W-algebras are quotients of (localizations of) the algebra

W(c, λ), including the principal W-algebra Wk(sln, fprin), the parafermion subalgebra

Ns(sl2) = Com(MH(1), Ls(sl2))

of Ls(sl2) and the coset algebra Ck = Com(MH(1),Wk(sl4, fsub)) of Wk(sl4, fsub).
If I is a maximal ideal of the form I = (c− c0, λ−λ0), for some c0, λ0 ∈ C, then WI(c, λ) and

its simple quotient WI(c, λ) are vertex algebras over C. Given maximal ideals I0 = (c−c0, λ−λ0)
and I1 = (c − c1, λ − λ1), let W0 and W1 be the simple quotients of WI0(c, λ) and WI1(c, λ).
The following criterion describes when they are isomorphic.

Proposition 3.1 ([27, Corollary 10.1]). Let W0 and W1 be the simple quotients of WI0(c, λ)
and WI1(c, λ). Then if c ̸= 0,−2, W0 and W1 are isomorphic only if c0 = c1 and λ0 = λ1,
hence any pointwise coincidences between the simple quotients of WI0(c, λ) and WI1(c, λ) must
correspond to intersection points of the truncation curves V (I0) ∩ V (I1).

3.2 Coincidences between parafermion algebras of Ls(sl2)
and Wk(sl4, fsub) and applications

Since LN=2
c and Ls(sl2) are in Kazama–Suzuki duality for c = 3s

s+2 (cf. [1]), we know that their
coset subalgebras will coincide. Therefore, we can use the above criterion in order to determine
when the coset algebras Ns(sl2) and Ck are isomorphic.

Proposition 3.2. The parafermionic algebras Ns(sl2) and Ck coincide only in the following
cases:

(1) k = −1 and s = −5
3 ;

(2) k = −3
2 and s = −7

5 ;

(3) k = −13
4 and s = −7

4 ;
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(4) k = −8
3 and s = 0;

(5) k = −5
2 and s = 1;

(6) k = −7
3 and s = 1;

(7) k = −11
4 and s = −1

2 .

Proof. By [27, Corollary 10.1], aside from the cases c = 0,−2, all other isomorphisms of simple
quotients Ns(sl2) ∼= Ck correspond to intersection points of the corresponding truncation curves
parameterizing Ns(sl2) and Ck.

The parafermionic subalgebra Ns(sl2) = Com(MH(1), Ls(sl2)) is obtained as a simple quo-
tient of W(c, λ) by setting (cf. [27, Theorem 7.1])

c =
2(s− 1)

s+ 2
, λ =

s+ 1

(s− 2)(3s+ 4)
, (3.1)

while Ck = Com(MH(1),Wk(sl4, fsub)) of Wk(sl4, fsub) is obtained by setting (cf. [27, Theo-
rem 7.3])

c = −4(5 + 2k)(7 + 3k)

4 + k
, λ = − (3 + k)(4 + k)

3(2 + k)2(16 + 5k)
. (3.2)

Equating (3.1) and (3.2) shows that there are exactly five such points (k, s), namely,(
−13

4
,−7

4

)
,

(
−8

3
, 0

)
,

(
−5

2
, 1

)
,

(
−3

2
,−7

5

)
,

(
−1,−5

3

)
.

It remains to check the cases in which the parafermionic subalgebras are not obtained as
quotients of the universal W-algebra W(c, λ), that is, for c = 0 and c = −2.

If c = −2, we have (k, s) =
(
−2,−1

2

)
or (k, s) =

(
−11

4 ,−
1
2

)
. If (k, s) =

(
−11

4 ,−
1
2

)
, then

the parafermionic subalgebras Ns(sl2) and Ck are both isomorphic to the singlet algebra M(2)
(cf. [28, 29]). If (k, s) =

(
−2,−1

2

)
, then W−2(sl4, fsub) ∼= LVir

c=−2 ⊗ H (this can be seen either
directly from the OPEs by renormalizing the field W̃ := (k + 2)W , or from the result of [11,
Section 5.4]), hence C−2

∼= LVir
c=−2. But N−1/2(sl2) ∼= W−2(sl3, fprin), hence the parafermionic

subalgebras do not coincide.
If c = 0, then we have (k, s) =

(
−5

2 , 1
)
or (k, s) =

(
−7

3 , 1
)
. If (k, s) =

(
−5

2 , 1
)
, then

W−5/2(sl4, fsub) is isomorphic to the Heisenberg vertex algebraM(1) (cf. [9]) and N1(sl2) ∼= C1.
If (k, s) =

(
−7

3 , 1
)
, then W−7/3(sl4, fsub) is isomorphic to the rank one lattice vertex algebra V2Z

(cf. [11, Theorem 5.5.]), which implies C−7/3
∼= N1(sl2) ∼= C1. ■

Remark 3.3. Two of the cases from Proposition 3.2 are in fact collapsing levels: for (k, s) =(
−8

3 , 0
)
it was shown in [7] that W−8/3(sl4, fsub) ∼= C1, therefore the parafermionic subalgebras

are 1-dimensional. If (k, s) =
(
−5

2 , 1
)
, then W−5/2(sl4, fsub) is isomorphic to the Heisenberg

vertex algebra M(1) (cf. [9]), implying that the parafermionic subalgebras are 1-dimensional.

Remark 3.4. The coincidences from Proposition 3.2 can also be checked directly from the
explicit expressions for OPEs of Ns(sl2) from [15].

3.3 Classification of KS dualities

Using the Kazama–Suzuki duality of Ls(sl2) and LN=2
c (cf. [1]), where c = 3s

s+2 , we have the
following.

Theorem 3.5. LN=2
c and Wk(sl4, fsub) are in Kazama–Suzuki duality if and only if k = −1

and c = −15 or k = −7
3 and c = 1.
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Proof. Necessary conditions for LN=2
c and Wk(sl4, fsub) to be in Kazama–Suzuki duality are (i)

their corresponding coset subalgebras need to coincide and (ii) (G+)2 needs to be a singular
vector in Wk(sl4, fsub)

(
in order for generators to satisfy the relations for the LN=2

c algebra
)
,

hence the only possibilities are those listed in Proposition 3.2. Among those, it follows easily from
Proposition 2.1 that (G+)2 is a singular vector inWk(sl4, fsub) only in the cases (k, s) =

(
−1,−5

3

)(
which corresponds to W−1(sl4, fsub) and L

N=2
c=−15

)
, and (k, s) =

(
−7

3 , 1
) (

which corresponds to
W−7/3(sl4, fsub) and L

N=2
c=1

)
.

Kazama–Suzuki duality between LN=2
c=−15 and W−1(sl4, fsub) will be studied in Section 4. Let

us now discuss the case of W−7/3(sl4, fsub) and L
N=2
c=1 .

We claim that there exist embeddings

Φ: LN=2
c=1 → W−7/3(sl4, fsub)⊗F−1, Φinv : W−7/3(sl4, fsub) → LN=2

c=1 ⊗F1,

such that

LN=2
c=1

∼= Com(H1,W−7/3(sl4, fsub)⊗F−1), W−7/3(sl4, fsub) ∼= Com
(
H2, L

N=2
c=1 ⊗F1

)
,

where H1 and H2 are Heisenberg vertex algebras.
But this follows easily from the fact that W−7/3(sl4, fsub) ∼= F4 (cf. [11]) and LN=2

c=1
∼= F3

(cf. [22]), where Fn = VZα is the lattice vertex algebra associated to the lattice L = Zα,
⟨α, α⟩ = n. ■

4 The duality of W−1(sl4, fsub) and LN=2
c=−15

As we have seen in Section 3, Kazama–Suzuki duality between LN=2
c and Wk(sl4, fsub) can only

occur if k = −1 and c = −15 or k = −7
3 and c = 1. In this section, we consider the case k = −1.

Then the central charge of Wk(sl4, fsub) is c = −15. According to Lemma 2.2, (G+)2 is singular
vector in Wk(sl4, fsub), hence (G+)2 = 0 in Wk(sl4, fsub).

We will show that W−1(sl4, fsub) is the Kazama–Suzuki dual of the N = 2 superconformal
vertex algebra of central charge −15.

4.1 Embedding of LN=2
c=−15 into W−1(sl4, fsub) ⊗ F−1

First, we will show that the N = 2 superconformal algebra LN=2
c for c = −15 can be realized

as a subalgebra of W−1(sl4, fsub)⊗F−1, where F±1 is the vertex algebra associated to the rank
one lattice L = Zφ±, with

〈
φ±, φ±〉 = ±1 (cf. Section 2.1).

In this section, we shall use that fact that the universal superconformal N = 2 vertex al-
gebra V N=2

c is simple for c = −15, since it is the Kazama–Suzuki dual of the universal affine
vertex algebra V k=−5/3(sl2) (which is also simple by [21]).

Note that the maximal ideal in Wk(sl4, fsub) is invariant under the automorphism which
maps G+ to G−. Since (G+)2 is a singular vector in W−1(sl4, fsub), we conclude that (G−)2

also belongs to the maximal ideal of W−1(sl4, fsub). Now we want to show that the maximal
ideal is generated by these two vectors. Let I =

〈
(G+)2, (G−)2

〉
and define

W̃ = W−1(sl4, fsub)/I.

Let H⊥ = J + φ−. Then for n ≥ 0, we have

H⊥(n)H⊥ =
1

4
δn,11.

Let MH⊥(1) be the Heisenberg vertex algebra generated by H⊥, and MH⊥(1, s) the irreducible
highest weight MH⊥(1)-module on which H⊥(0) ≡ s Id.
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Proposition 4.1.

(1) There is a vertex algebra homomorphism Φ: LN=2
c=−15 → W̃ ⊗F−1 given by

E =
2

3
G+ ⊗ eφ

−
, F = −G− ⊗ e−φ

−
, H = −4J − 5φ−,

T = L− 2:JJ :− 4:Jφ−:− 5

2
:(φ−)2:.

(2) Let H⊥ = J + φ−. Then

W̃ ⊗F−1
∼=
⊕
n∈Z

σn
(
LN=2
c=−15

)
⊗MH⊥(1, n).

(3) We have

Im(Φ) ∼= Com(MH⊥(1),W−1(sl4, fsub)⊗F−1) ∼= LN=2
c=−15.

(4) W̃ = W−1(sl4, fsub), i.e., I is the maximal ideal in W−1(sl4, fsub).

Proof. It is easy to check that

H(0)E = E, H(0)F = −F, H(n)E = H(n)F = 0, n > 0,

H(1)H = −51 =
c

3
1, H(n)H = 0, n > 1.

Let L⊥ = L− 2
5 :JJ : (cf. Appendix B). We get that

T = L⊥ − 1

10
:HH:.

This implies that T is a Virasoro vector of central charge c = −15. Clearly, we have that H is
a primary vector for T of conformal weight 1.

Next we notice that
(
G±)2 = 0 in W̃ . Direct calculation shows that

E(0)E =
4

9

(
G+
)2 ⊗ e2φ

−
= 0, F(0)F = (G−)

2 ⊗ e−2φ−
= 0,

E(n)E = F(n)F = 0, n ∈ Z≥0,

and

E(2)F = −2(2 + k)(5 + 2k)(8 + 3k)

3
1 = (−10)1 =

2c

3
1,

E(1)F = −8(2 + k)(5 + 2k)

3
J − 2(2 + k)(5 + 2k)(8 + 3k)

3
φ− = −8J − 10φ− = 2H,

E(0)F = −2(2 + k)(5 + 2k)(8 + 3k)

3
· 1
2

(
:(φ−)2: + ∂φ−)− 8(2 + k)(5 + 2k)

3
:Jφ−:

+
2(k + 2)

(
(k + 4)L− 6:J2:− 2(2k + 5)∂J

)
3

= 2T + ∂H.

The above relations show that the even fields H, T and the odd fields E, F satisfy the λ-
bracket for the N = 2 superconformal vertex algebra of central charge c = −15. Since V N=2

c=−15

is simple, we conclude that H, T , E, F generate a vertex subalgebra of W̃ ⊗ F−1 isomorphic
to LN=2

c=−15. This proves the assertion (1).
Let W = Ker

W̃⊗F−1
H⊥(0). Then W is a vertex algebra which contains Im(Φ)⊗MH⊥(1).

Let us prove the following claim.
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Claim 4.2. W is a simple vertex algebra generated by
{
E,F, T,H,H⊥}.

Let U be the vertex subalgebra of W generated by
{
E,F, T,H,H⊥}. Then U ∼= Im(Φ) ⊗

MH⊥(1). Since Im(Φ) ∼= LN=2
c=−15, we conclude that U ∼= LN=2

c=−15 ⊗MH⊥(1), and it is therefore
simple.

For each n ∈ Z, we consider the U -module U (n) = U.enφ
−
. One can show that U (n) is

isomorphic to the simple U -module obtained by the simple current construction(
U (n), Y (n)(·, z)

)
:= (U, Y (∆(nφ−, )·, z)).

Note that φ− = −H − 4H⊥, which implies that

∆(φ−, z) = ∆(−H, z)∆
(
−4H⊥, z

)
.

� For a Im(Φ)-module M , by applying the operator ∆(−nH, z), we get the module σn(M).

� Applying the operator ∆
(
−4nH⊥, z

)
on MH⊥(1), we get the MH⊥(1)-module MH⊥(1, n).

We get U (n) = σn(Im(Φ)) ⊗ MH⊥(1, n). Note that H⊥(0) ≡ n Id on U (n). Using the
construction of H. Li from [26], we get that

U =
⊕
n∈Z

U (n)

is a vertex algebra and hence a vertex subalgebra of W̃ ⊗F−1. But it is not hard to see that U
contains all generators of W̃ ⊗F−1.

Indeed, eφ
− ∈ U (1), e−φ

− ∈ U (−1) and

G+ =
3

2
E(−2)e

−φ−
, G− = −F(−2)e

φ−
.

Since G+ and G− (weakly) generate W̃ , it follows that U = W̃ ⊗F−1.

This proves that U =W ∼= Im(Φ)⊗MH⊥(1). Therefore, W is a simple vertex algebra. This
proves Claim 4.2.

Now we get

W̃ ⊗F−1 =
⊕
n∈Z

U (n) =
⊕
n∈Z

σn
(
LN=2
c=−15

)
⊗MH⊥(1, n).

This implies the assertions (2) and (3).

As the right-hand side of decomposition in (2) is simple, it follows that W̃ must be simple
and therefore isomorphic to the unique simple quotient W−1(sl4, fsub). Hence I is the maximal
ideal in W−1(sl4, fsub). This proves assertion (4). ■

Let MH(1) be the Heisenberg subalgebra of LN=2
c=−15 generated by the Heisenberg field H(z)

and MJ(1) the Heisenberg subalgebra of Wk(sl4, fsub) generated by the Heisenberg field J(z).
From the proof of Proposition 4.1, we have the following corollary.

Corollary 4.3. Com
(
MH(1), L

N=2
c=−15

) ∼= Com(MJ(1),W−1(sl4, fsub)).
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4.2 Embedding of Wk(sl4, fsub) into LN=2
c=−15 ⊗ F1

It remains to show that W−1(sl4, fsub) can be realized as a subalgebra of the tensor product of
the N = 2 superconformal algebra LN=2

c for c = −15 and the lattice vertex algebra F1.
Let H = H −φ+. Then for n ≥ 0 we have H(n)H = −4δn,11. Let MH(1) be the Heisenberg

vertex algebra generated by H, and MH(1, s) the irreducible highest weight MH(1)-module on
which H(0) ≡ s Id.

Proposition 4.4.

(1) There is a vertex algebra homomorphism Φinv : W−1(sl4, fsub) → LN=2
c=−15 ⊗F1 given by

G+ = E ⊗ eφ
+
, G− =

3

2
F ⊗ e−φ

+
, J = −1

4
H +

5

4
φ+,

L = T +
1

10
:HH: +

2

5
:

(
−1

4
H +

5

4
φ+

)2

:, W = −3

2
WN=2
c=−15.

(2) Im
(
Φinv

)
is isomorphic to the simple vertex algebra W−1(sl4, fsub).

(3) As a W−1(sl4, fsub)⊗MH(1)-module

LN=2
c=−15 ⊗F1

∼=
⊕
n∈Z

ψ−n(W−1(sl4, fsub))⊗MH(1, n).

(4) We have

Com
(
MH(1), L

N=2
c=−15 ⊗F1

) ∼= W−1(sl4, fsub).

Proof. (1) First we notice that L = T⊥ + 2
5 :JJ :, which implies that L is a Virasoro vector of

central charge c = −15. Note that L⊥ = L − 2
5 :JJ : = T⊥. Clearly, J is a primary vector of

conformal weight 1 with respect to L. Moreover, since L = T + 2
5 :JJ : +

1
10 :HH:, we conclude

that G± are primary vectors of conformal weight 2. Direct calculation shows that

G+(3)G− =
3

2
(−E(2)F ) =

3

2

(
−2c

3

)
1 = 151 = (2 + k)(5 + 2k)(8 + 3k)1,

G+(2)G− =
3

2

(
−E(1)F − φ+(−1)E(2)F

)
=

3

2

(
−2H − 2c

3
φ+

)
= 12

(
−1

4
H +

5

4
φ+

)
= 12J = 4(2 + k)(5 + 2k)J.

We should show that

G+(1)G− = −3L+ 6:JJ : + 6∂J = −3L⊥ +
24

5
J2 + 6∂J.

Indeed

G+(1)G− =
3

2

(
−E(0)F − φ+(−1)E(1)F − 1

2

(
:
(
φ+
)2
: + ∂φ+

)
E(2)F

)
=

3

2

(
−2T − ∂H − 2:Hφ+:− 1

2

(
:
(
φ+
)2
: + ∂φ+

)2c
3

)
1

= −3L⊥ +
3

10
:H2:− 3

2
∂H − 3:Hφ+: +

15

2

(
:
(
φ+
)2
: + ∂φ+

)
= −3L⊥ +

24

5
:J2: + 6∂J.
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Next, we need to show that

G+(0)G− = (k + 2)

(
W +

8(11k + 32)

3(3k + 8)2
:J3:− 4(k + 4)

3k + 8
:LJ : + 6:∂JJ : − k + 4

2
∂L

+
4(3k2 + 17k + 26)

3(3k + 8)
∂2J

)
=W +

32

25
:J3:− 12

5
:JL⊥: +

24

5
:∂JJ :− 3

2
∂L⊥ + 2∂2J. (4.1)

We have that

G+(0)G− =
3

2

(
−E(−1)F − φ+(−1)E(0)F − E(1)F · 1

2

(
:
(
φ+
)2
: + ∂φ+

)
−E(2)F · 1

6

(
:
(
φ+
)3
: + 3:φ+∂φ+: + ∂2φ+

))
=

3

2

(
−E(−1)F − φ+(−1)

(
2L⊥ − 1

5
:H2: + ∂H

)
− 2H · 1

2

(
:
(
φ+
)2
: + ∂φ+

)
−2c

3
· 1
6

(
:
(
φ+
)3
: + 3:φ+∂φ+: + ∂2φ+

))
. (4.2)

As the parafermionic subalgebras of W−1(sl4, fsub) and LN=2
c=−15 coincide (cf. Corollary 4.3),

it follows that the field W coincides (up to normalization) with the parafermionic genera-
tor WN=2

c=−15, that is,

W = ν

(
:EF :− ∂L⊥ − 3

2c
:H∂H:− 6

c
:HL⊥:− 1

3
∂2H +

3

c2
:H3:

)
= ν

(
:EF :− ∂L⊥ +

1

5
:∂HH: +

2

5
:HL⊥:− 1

3
∂2H − 1

75
:H3:

)
. (4.3)

Setting ν = −3
2 and substituting (4.3) into (4.1), we obtain that (4.2) = (4.1). This proves the

assertion (1).
(2) Let us prove that Im

(
Φinv

)
is simple. Let W = KerLN=2

c=−15⊗F1
H(0). It is clear that W is

a simple vertex algebra which contains Im
(
Φinv

)
⊗MH(1). The simplicity of Im

(
Φinv

)
follows

from the following claim.

Claim 4.5. W is generated by
{
G+, G−, J, L,W,H

}
.

Proof of Claim 4.5 is analogous to the proof of Claim 4.2 in Proposition 4.1. Let U be the
vertex subalgebra of W generated by

{
G+, G−, J, LU ,W,H

}
. Then clearly U ∼= Im

(
Φinv

)
⊗

MH(1).
Let U (n) be the U -module obtained by the simple current construction(

U (n), Y (n)(·, z)
)
:=
(
U, Y

(
∆
(
nφ+

)
·, z
))
.

As in Proposition 4.1, from the formula

∆
(
nφ+, z

)
= ∆(nJ, z)∆

(n
4
H, z

)
we get U (n) = ψ−n(Im(Φinv

))
⊗MH(1, n).

The rest of the proof follows analogously. ■

We have proved the following.

Theorem 4.6. The vertex algebra W−1(sl(4), fsub) is the Kazama–Suzuki dual of the N = 2
superconformal vertex algebra LN=2

c=−15.
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5 Classification of irreducible modules for W−1(sl4, fsub)

In this section, we will classify irreducible highest weight modules for W−1(sl4, fsub), using
the realization from Section 4. We shall first show the existence of irreducible highest weight
modules using the realization of W−1(sl4, fsub) as a subalgebra of LN=2

c ⊗ F1. Next we classify
the irreducible modules using the inverse Kazama–Suzuki construction.

5.1 Irreducible modules for W−1(sl(4), fsub)

Recall that we consider W−1(sl4, fsub) as a graded vertex algebra where the gradation is defined
by the operator L̃(0).

Furthermore (G+)2 is singular vector in W−1(sl4, fsub) (cf. Lemma 2.2). This implies that
L(x, y, z)top can be either 1-dimensional or 2-dimensional.

5.2 Modules for W−1(sl4, fsub) with 1-dimensional top spaces

Let Lc[h, q] be the irreducible highest weight LN=2
c -module, generated by the highest weight

vector vh,q such c = −15 and H(0)vh,q = hvh,q, T (0)vh,q = qvh,q.
Let wh,q = vh,q ⊗ 1 ∈ Lc[h, q]⊗F1. We need the following result for c = −15.

Lemma 5.1. Let W =WN=2
c . Let W (z) =

∑
n∈ZW (n)z−n−3. Then for n ∈ Z≥0

W (0)wh,q = ν

(
2q − 6

c
(qh+ h)− 2(c− 9)

3c
h+

6

c2
h3
)
wh,q.

In particular, when c = −15, we get for all n ∈ Z≥0

W (n)wh,q = − 1

25
δn,0(h+ 5)

(
h2 − 5h+ 15q

)
wh,q.

Proof. Using the formula for normal ordered fields, we see that (:EF :)(2)wh,q = 0. Then from
the expression (4.3), we easily get W (n)wh,q = 0 for n > 0 and

W (0)wh,q = ν

(
2q − 6

c
(qh+ h)− 2(c− 9)

3c
h+

6

c2
h3
)
wh,q.

The proof follows. ■

Lemma 5.2. The vector wh,q is a highest weight vector for the W−1(sl4, fsub)-module Lc[h, q]⊗
F1 such that

J(0)wh,q = −h
4
wh,q, L(0)wh,q =

(
q +

1

8
h2
)
wh,q,

W (0)wh,q = − 1

25
(h+ 5)

(
h2 − 5h+ 15q

)
wh,q.

Proof. Follows from Lemma 5.1 or Lemma 5.3 (proof is given in the appendix). ■

Lemma 5.3. The projection of W in A
(
LN=2
c

)
is given by

[W ] = − 1

25
([H] + 5)

(
[H]2 − 5[H] + 15[T ]

)
.

Proposition 5.4. Let L(x, y, z) be an irreducible Wk=−1(sl4, fsub)-module such that the top level
L(x, y, z)top is 1-dimensional. Then for (x, y, z) ∈ C3 it holds that

g1(x, y, z) := −6x2 +
56

25
x3 + 4x− 12

5
xy + 3y + z = 0.
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Proof. Assume that the top level L(x, y, z)top is 1-dimensional. Then G−(0)vx,y,z is a singular
vector, or equivalently

[[
G+
]
, [G−]

]
vx,y,z = 0.

The statement follows from the following relation in the Zhu algebra A
(
Wk(sl4, fsub)

)
(proof

is given in Appendix A). ■

Lemma 5.5. In the Zhu algebra A(Wk(sl4, fsub)) it holds that[[
G+
]
, [G−]

]
=
[
G+(0)G−]

= (k + 2)

(
4[J ]

(
6k2 + k(31− 3[L])− 12[L] + 40

)
9k + 24

+
8(11k + 32)[J ]3

3(3k + 8)2

+(k + 4)[L]− 6[J ]2 + [W ]
)
.

For k = −1, we have

[[
G+
]
, [G−]

]
= −6[J ]2 +

56

25
[J ]3 + 4[J ]− 12

5
[J ][L] + 3[L] + [W ]. (5.1)

Corollary 5.6. Assume that L(x, y, z) is an irreducible Wk=−1(sl4, fsub)-module such that the
top level L(x, y, z)top is 1-dimensional. Then L(x, y, z) can be realized as a subquotient of
an LN=2

c ⊗F1-module, viewed as Wk=−1(sl4, fsub)-module.

Proof. The statement follows from Lemma 5.2 and Proposition 5.4. Let x = −h
4 , y =

q + 1
8h

2 and substitute into the relation (5.1). Consider Lc[h, q] ⊗ F1 as Wk=−1(sl4, fsub)-
module. Then L̃(x, y, z) = Wk=−1(sl4, fsub).(wh,q ⊗ 1) is a highest weight Wk=−1(sl4, fsub)-
module whose top component is 1-dimensional. In particular, its simple quotient L(x, y, z)
is irreducible Wk=−1(sl4, fsub)-module with 1-dimensional top space. ■

5.3 Modules for W−1(sl4, fsub) with 2-dimensional top spaces

We consider again Lc[h, q]⊗F1. Let w2 = wh,q ⊗ eφ
+
. Then

G+(0)w2 = E(−1/2)wh,q ⊗ eφ
+

(−1)e
φ+

= 0,

G−(0)w2 = F (1/2)wh,q ⊗ e−φ
+

(0) eφ
+
= F (1/2)wh,q ⊗ 1,

J(0)w2 =

(
−1

4
H(0) +

5

4
φ+(0)

)
w2 = −h− 5

4
w2 =: xw2,

L(0)w2 =

(
T +

1

8
:H2:− 1

4
:Hφ+: +

5

8
:
(
φ+
)2
:

)
(1)

w2 =

(
q +

h2 − 2h+ 5

8

)
w2 =: yw2,

W (0)w2 = − 1

25
(h+ 5)

(
h2 − 5h+ 15q

)
w2 =: zw2.

Clearly, (x, y, z) ∈ C3 defined above give all zeros of the polynomial

g2(x, y, z) = z +
1

25
(−5 + 2x)

(
75− 80x+ 28x2 − 30y

)
.

We get the following.

Lemma 5.7. Assume that g2(x, y, z) = 0. Then L(x, y, z) is an irreducible highest weight
W−1(sl4, fsub)-module such that dimL(x, y, z)top ≤ 2.
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Proof. Assume that (x, y, z) is a zero of the equation g2(x, y, z) = 0. Then it can be written
in a form

(x, y, z) =

(
−h− 5

4
, q +

h2 − 2h+ 5

8
,− 1

25
(h+ 5)

(
h2 − 5h+ 15q

))
for suitable (h, q) ∈ C2. The above computation shows that L̃(x, y, z) = W−1(sl4, fsub).w2 is
a highest weight W−1(sl4, fsub)-module whose top space is at most 2-dimensional. Let L(x, y, z)
be the irreducible quotient of L̃(x, y, z). Then L(x, y, z) is an irreducible W−1(sl4, fsub)-module
such that dimL(x, y, z)top≤2. ■

5.4 Classification of irreducible W−1(sl4, fsub)-modules

Let

S1 =

{(
−h
4
, q +

h2

8
,− 1

25
(h+ 5)

(
h2 − 5h+ 15q

))
, (h, q) ∈ C2

}
,

S2 =

{(
−h−5

4
, q +

h2 − 2h+ 5

8
,− 1

25
(h+ 5)

(
h2 − 5h+ 15q

))
, (h, q) ∈ C2

}
.

We have seen earlier that Si = {(x, y, z) | gi(x, y, z) = 0}, i = 1, 2. Now we have our main
result.

Theorem 5.8. The set {L(x, y, z) | (x, y, z) ∈ S1 ∪ S2} provides a complete list of irreducible,
highest weight Wk=−1(sl4, fsub)-modules. Moreover,

dimL(x, y, z)top = 1 ⇐⇒ (x, y, z) ∈ S1,

dimL(x, y, z)top = 2 ⇐⇒ (x, y, z) ∈ S2 \ S1.

Proof. We already proved in Corollary 5.6 and Lemma 5.7 that L(x, y, z), (x, y, z) ∈ S1 ∪ S2,
are irreducible W−1(sl4, fsub)-modules. Now we shall see that these modules give all irreducible,
highest weight Wk=−1(sl4, fsub)-modules.

Since :
(
G±)2: belong to the maximal ideal in Wk=−1(sl4, fsub), it follows that :

(
G±)2: = 0 in

Wk=−1(sl4, fsub) and hence dimL(x, y, z)top ≤ 2.
Assume first that dimL(x, y, z)top = 1. Then using the homomorphism

Φ: LN=2
c=−15 → W−1(sl4, fsub)⊗F−1

from Proposition 4.1, we get that L(x, y, z) ⊗ F−1 is a LN=2
c=−15-module. Then w1 = vx,y,z ⊗ 1

is a highest weight vector for the action of LN=2
c=−15 with highest weight (h, q) =

(
−4x, y − 2x2

)
.

Since W = −3
2W

N=2
c=−15, we get that

W (0)w1 = zw1 = − 1

25
(h+ 5)

(
h2 − 5h+ 15q

)
w1.

Therefore, (x, y, z) ∈ S1.
Assume next that dimL(x, y, z)top = 2 and consider again L(x, y, z) ⊗ F−1 as a LN=2

c=−15-
module. Let w2 = vx,y,z ⊗ eφ

−
. It follows that w2 is a highest weight vector for the action

of LN=2
c=−15 with highest weight (h, q) =

(
−4x+ 5, y − 2x2 + 4x− 5

2

)
. Then

x = −h− 5

4
, y = q + 2x2 − 4x+

5

2
= q +

1

8
h2 − 1

4
h+

5

8
.

As above, the action of W (0) is given by

W (0)w2 = − 1

25
(h+ 5)

(
h2 − 5h+ 15q

)
w2.

Hence, (x, y, z) ∈ S2. The proof follows. ■
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A Relations in the Zhu algebra A(Wk(sl4, fsub))

The vertex algebra Wk(sl4, fsub) is generated by fields J , L, G+, G−, W of conformal weight 1,
2, 1, 3, 3 with respect to the grading operator L̃(0). Hence the Zhu algebra A

(
Wk(sl4, fsub)

)
is

generated by [G+], [G−], [J ], [L], [W ].

Lemma A.1. In the Zhu algebra A
(
Wk(sl4, fsub)

)
it holds that[[

G+
]
, [G−]

]
=
[
G+(0)G−]

= (k + 2)

(
4x
(
6k2 + k(31− 3y)− 12y + 40

)
9k + 24

+
8(11k + 32)x3

3(3k + 8)2

+(k + 4)y − 6x2 + z
)
.

For k = −1, we have

[[
G+
]
, [G−]

]
= −6[J ]2 +

56

25
[J ]3 + 4[J ]− 12

5
[J ][L] + 3[L] + [W ].

Proof. Using the commutator formula (cf. [30])

[a] ∗ [b]− [b] ∗ [a] = Resz(z + 1)deg a−1Y (a, z)b,

we have that[[
G+
]
, [G−]

]
= Resz(z + 1)degG

+−1G+(z)G− =
[
G+(0)G−].

From the OPEs for the subregular W-algebra Wk(sl4fsub), we have that

G+(0)G− = (k + 2)

(
W +

8(k + 11)

3(3k + 8)2
:J3:− 4(k + 4)

3k + 8
:LJ : + 6:∂JJ :

+
k + 4

2
∂L+

4
(
3k2 + 17k + 26

)
3(3k + 8)

∂2J

)
.

Let us compute the projection of these elements in the Zhu algebra A
(
Wk(sl4, fsub)

)
. Since

[J(−i1 − 1) · · · J(−in − 1)1] = (−1)i1+···+in [(J(−1)n1] = (−1)i1+···+inxn,

we have the following relations:

(1)
[
:J3:

]
=
(
J(−1)31

]
= [J ]3,

(2) [:∂JJ :] = [J(−2)J(−1)1] = −
[
J(−1)21

]
= −[J ]2,

(3)
[
∂2J

]
= 2[J(−3)1] = 2[J ].

Next, we claim that

(4) [∂L] = [L(−3)1] = −2[L].

Since (L(−n − 2) + 2L(−n − 1) + L(−n))v ∈ O(V ) (cf. [30]), it follows that [L(−3)1] =
−2[L(−2)1] = −2[L].

(5) [:LJ :] = [J ][L] + [J ].
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We have

[L] ∗ [J ] = Resz
(1 + z)2

z
L(z)J =

(
1

z
+ 2 + z

)(∑
L(n)z−n−2

)
J

= [L(−2)J(−1)1] + 2[L(−1)J(−1)1] + [L(0)J(−1)1]

= [L(−2)J(−1)1] + [L(−1)J(−1)1]

= [L(−2)J(−1)1] + [J(−2)1] = [L(−2)J(−1)1]− [J ].

Combining these relations and evaluating at k = −1 we obtain that[
G+(0)G−] = −6[J ]2 +

56

25
[J ]3 + 4[J ]− 12

5
[J ][L] + 3[L] + [W ]. ■

Lemma A.2. The projection of W in A
(
LN=2
c

)
is given by

[W ] = − 1

25
([H] + 5)

(
[H]2 − 5[H] + 15[T ]

)
.

Proof. From the proof of Proposition 4.4, we have that the field W ∈ Wk(sl4, fsub) can be
realized in LN=2

c=−15 ⊗F1 as

W = −3

2
WN=2
c=−15 = −3

2

(
:EF :− ∂L⊥ +

1

5
:∂HH: +

2

5
:HL⊥:− 1

3
∂2H − 1

75
:H3:

)
.

Analogously to the proof of Lemma A.1, we compute the projection of the elements into the
Zhu algebra A

(
LN=2
c

)
:

(1)
[
:H3:

]
=
[
H(−1)31

]
= [H]3,

(2) [:∂HH:] = [H(−2)H(−1)1] = −
[
H(−1)21

]
= −[H]2,

(3)
[
∂2H

]
= 2[H(−3)1] = 2[H].

As L⊥ = T + 1
10 :HH:, we have

(4)
[
∂L⊥] = [∂T + 1

10∂(:HH:)
]
= [T (−3)1] + 1

10 [2H(−2)H(−1)1] = −2[T ]− 1
5 [H]2.

We claim that

(5)
[
:HL⊥:

]
= [H][T ] + 1

10 [H]3.

We have
[
:HL⊥:

]
=
[
:HT : + 1

10 :H
3:
]
. Let us compute [:HT :]

[H] ∗ [T ] = Resz
(1 + z)1

z
H(z)T =

(
1

z
+ 1

)(∑
H(n)z−n−1

)
T

= [H(−1)T (−2)1] + [H(0)T (−2)1] = [HT ].

Next, we have

(6) [E(−1)F ] = 0.

This follows from

[E(−1)1] ◦ [F(−1)1] = 0 = ReszE(z)
(1 + z)

1
2
− 1

2

z
F(−1)1

= Resz
1

z

(∑
E(n)z

−n−1
)
F = [E(−1)F ]. ■



Kazama–Suzuki Duality between Wk(sl4, fsub) and N = 2 Superconformal Vertex Algebra 21

B Operator product expansions for Wk(sl4, fsub)

The subregular W-algebra Wk(sl4, fsub) is isomorphic to the Feigin–Semikhatov algebra W
(2)
4 .

It is generated by the even fields J(z), L(z), G±(z), W (z) satisfying the following OPEs
(cf. [17]):

J(x)J(y) ∼ 3k + 8

4(z − w)2
, J(z)G±(w) ∼ ±G

±(w)

z − w
, G±(z)G±(w) ∼ 0,

L(z)G±(w) ∼ 2G±(w)

(z − w)2
+
∂G±(w)

(z − w)
, L(z)J(w) ∼ J(w)

(z − w)2
+

∂J(w)

(z − w)
,

L(z)L(w) ∼ − ck
2(z − w)4

+
2L(w)

(z − w)2
+
∂L(w)

z − w
,

L(z)W (w) ∼ 3W (w)

(z − w)2
+
∂W (w)

(z − w)
, J(z)W (w) ∼ 0,

G+(z)G−(w) ∼ (k + 2)(2k + 5)(3k + 8)1

(z − w)4
+

4(k + 2)(2k + 5)J(w)

(z − w)3

+ (k + 2)
6:JJ :(w) + 2(2k + 5)∂J(w)− (k + 4)L(w)

(z − w)2

+ (k + 2)

(
W (w) +

(
8(k + 11)

3(3k + 8)2
:J3:(w)− 4(k + 4)

3k + 8
:L(w)J(w):

+ 6:∂J(w)J(w): +
k + 4

2
∂L(w)

+
4(3k2 + 17k + 26)

3(3k + 8)
∂2J(w)

))
(z − w)−1,

W (z)G±(w) ∼ ±2(k + 4)(3k + 7)(5k + 16)G±(w)

(3k + 8)2(z − w)3
+

(
±3(k + 4)(5k + 16)∂G±(w)

2(3k + 8)

−6(k + 4)(5k + 16):J(w)G±(w):

(3k + 8)2

)
(z − w)−2

+

(
−8(k + 4)(k + 3):J(w)∂G±(w):

(k + 2)(3k + 8)

−4(k + 4)(3k2 + 15k + 16):∂J(w)G±(w):

(k + 2)(3k + 8)2

±(k + 4)(k + 3)∂2G±(w)

(k + 2)
∓ 2(k + 4)2:L(w)G±(w):

(k + 2)(3k + 8)

±4(k + 4)(5k + 16):J(w)2G±(w):

(k + 2)(3k + 8)2

)
(z − w)−1,

W (z)W (w) ∼ 2(k + 4)(2k + 5)(3k + 7)(5k + 16)1

(3k + 8)(z − w)6
− 3(k + 4)2(5k + 16)

(3k + 8)(z − w)4
L⊥(w)

− 3(k + 4)2(5k + 16)

2(3k + 8)(z − w)3
∂L⊥(w)

+

(
−3(k + 4)2(5k + 16)(12k2 + 59k + 74)

4(3k + 8)(20k2 + 93k + 102)
∂2L⊥(w)

+
8(k + 4)3(5k + 16)

(3k + 8)(20k2 + 93k + 102)
:L⊥(w)L⊥(w): + 4(k + 4)Λ(w)

)
(z − w)−2

+

(
−(k + 4)2(5k + 16)(12k2 + 59k + 74)

6(3k + 8)(20k2 + 93k + 102)
∂3L⊥(w)
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+
8(k + 4)3(5k + 16)

(3k + 8)(20k2 + 93k + 102)
:∂L⊥(w)L⊥(w):

+ 2(k + 4)∂Λ(w)

)
(z − w)−1,

where

(k + 2)2Λ = :G+G−: + (k + 2)

(
−∂W (z)

2
− 4:W (z)J(z):

3k + 8

+
(k + 2)(k + 4)

(
6k2 + 33k + 46

)
2(3k + 8)

(
20k2 + 93k + 102

) ∂2L⊥(z)

− (k + 4)2(11k + 26)

2(3k + 8)
(
20k2 + 93k + 102

) :L⊥(z)L⊥(z): +
2(k + 4)

3k + 8
∂:L⊥(z)J(z):

+
8(k + 4)

(3k + 8)2
:L⊥(z)J(z)J(z):− 2k + 5

3k + 8

(
8

3
:∂2J(z)J(z): + 2:∂J(z)∂J(z):

+
16

3k + 8
:∂J(z)J(z)J(z): +

32

3(3k + 8)2
:J(z)4: +

3k + 8

6
∂3J(z)

))
,

L⊥ = L− 2
3k+8 :JJ : and ck = − (3k+8)(8k+17)

(k+4) .
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