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Abstract. Let (Xn, ℓ) be the pair consisting of the Dynkin diagram of finite type Xn and
a positive integer ℓ ≥ 2, called the level. Then we obtain the Y-system, which is the set of
algebraic relations associated with this pair. Related to the Y-system, a sequence of integers
called exponents is defined through a quiver derived from the pair (Xn, ℓ). Mizuno provided
conjectured formulas for the exponents associated with Y-systems in [Mizuno Y., SIGMA 16
(2020), 028, 42 pages, arXiv:1812.05863]. In this paper, we study the exponents associated
with level 2 Y-systems for classical Dynkin types. As a result, we present proofs of Mizuno’s
conjecture for (Bn, 2) and (Dn, 2), and give a reformulation for (Cn, 2).
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1 Introduction

Cluster algebras introduced by Fomin and Zelevinsky in the early 2000s [1, 2] have played a sig-
nificant role in many areas of mathematics. Due to their broadly applicable structure, they have
been studied in various fields such as representation theory, combinatorics, algebraic geometry,
and number theory, among others. In particular, we focus on recent research by Mizuno [12],
which calculates a certain class of Y-systems. The prototypes of Y-systems were introduced by
Zamolodchikov around 90s in the study of two-dimensional integrable filed theory [15]. Then,
some generalization were introduced by Ravanini–Tateo–Valleriani, Kuniba–Nakanishi–Suzuki,
and others [8, 14]. His research has revealed a connection between cluster algebras and the
representation theory of affine Lie algebras. This connection was established through the coin-
cidence of hypergeometric series, known as partition q-series and the string functions of affine
Lie algebras. Partition q-series, which is defined by Kato and Terashima [6], is a certain q-series
associated with a mutation sequence. Mizuno has shown that the asymptotics of this partition
q-series is calculated by matrices determined by the mutation sequence and the corresponding
cluster algebra. Furthermore, we are able to verify that the limit of the partition q-series co-
incides with the asymptotic dimension of an irreducible representation of the affine Lie algebra
found by Kac and Peterson [5].

We explore the intersection of these two theories and examine the sequence of integers called
exponents, which are introduced from the theory of cluster algebras. First, we review the defini-
tions of quiver mutations and mutation loops provided by pairs of quivers and their mutations.
Then we define a cluster transformation of variables associated to the mutation loop. A Dynkin
quiver is determined by a Dynkin diagram and the integer ℓ greater than 2, referred to as
a level [3, 4]. After explaining the property of Dynkin quivers, we will specifically construct cases
for level 2. We review the Y-system, which plays an important role in this paper. Y-systems have
been extensively studied as important objects in mathematical physics and integrable systems.
The Y-system is formulated through simultaneous nonlinear difference equations, which describe
the relationship between the Y-functions associated with integrable models. In this paper, we
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treat the Y-system associated with RSOS models introduce by Kuniba–Nakanishi [13]. Such
Y-system is a set of algebraic relations defined for a pair consisting of the Dynkin diagram and
the integer ℓ. We follow [9] on the Y-system. The periodicities of the Y-systems were conjec-
tured. Associated to the introduction of cluster algebra, connection between Zamolodchikov’s
Y-systems was established by Fomin and Zelevinsky. A similar connection was established by
Keller and Inoue–Iyama–Kuniba–Nakanishi–Suzuki for more general Y-systems. Then the peri-
odicity has been proved by using the cluster algebraic method in [3, 4, 7]. Therefore, we have
that the cluster transformation for mutation loops exhibits periodicity, which allow us to define
exponents. Due to the periodicity, we find that eigenvalues of the Jacobian for the cluster trans-
formation are roots of unity. Therefore, we are able to characterize eigenvalues using a sequence
of nonnegative integers. We call such sequences exponents of Dynkin quivers.

For the exponents associated with these Y-systems, Mizuno provided Conjecture 3.2 which
gives conjectural formulas based on the corresponding root systems. Furthermore, he proved for
these conjectural formulas in the cases (A1, ℓ) and (An, 2) (cf. [12]). In this study, we investigate
level 2 Dynkin quivers associated with other classical type Dynkin diagrams. We prove Mizuno’s
conjecture for (Bn, 2) and (Dn, 2), and reduce it for (Cn, 2) to Conjecture 4.7.

2 Preliminary

2.1 Quiver and Y-seed mutations

A quiver is a directed graph with vertices I = {1, . . . , N} that may have multiple edges. In this
paper, we assume that quivers do not have 1,2-cycles. We define quiver mutations as follows.

Definition 2.1. Let Q be a quiver and let k be a vertex of Q. The quiver mutation µ′k is
a transformation of quiver defined by the following steps:

1. For each length two path i→ k → j, add the new arrow i→ j.

2. Reverse all arrows incident to the vertex k.

3. Remove all 2-cycles.

For instance, we have the following transition.

Example 2.2.

k
(1)⇒ k

(2)⇒ k
(3)⇒

Consider a quiver Q with vertices I. Let Qi,j be the number of arrows from i to j and ν be
a permutation of {1, . . . , N}. Then the action of ν on Q is defined by ν(Q)i,j = Qν−1(i),ν−1(j).
Set m = (m1, . . . ,mT ) to be a sequence of I. Then we have the transformation

Q(0)
µ′
m1−→ Q(1)

µ′
m2−→ · · ·

µ′
mT−→ Q(T )

ν−→ ν(Q(T )),

where Q(0) stands for Q. The triple γ = (Q,m, ν) is called a mutation loop if Q(0) = ν(Q(T )).
Now we see the definition of Y-seed mutations. Consider the set for variables y1, . . . , yN

given by

F =

{
f(y1, . . . , yN )

g(y1, . . . , yN )

∣∣∣∣ f, g ∈ Q≥0[y1, . . . , yN ] \ {0}
}
.
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This is closed under the usual multiplication and addition and called universal semifield in the
variables y1, . . . , yN . A Y-seed is a pair (Q,Y ) for a quiver Q and Y = (Y1, . . . , YN ) ∈ FN . For
given pair, Y-seed mutations are defined as follows.

Definition 2.3. Let k be vertex of Q. The Y-seed mutation µk is a transformation of the
pair (Q,Y ) obtained by extending the definition of the quiver mutation so that

µk(Q) = µ′k(Q), µk(Y )i =


Y −1
k if i = k,

Yi
(
Y −1
k + 1

)−Qk,i if i ̸= k, Qk,i ≥ 0,

Yi(Yk + 1)Qi,k if i ̸= k, Qi,k ≥ 0.

Example 2.4. For the quiver given in Example 2.2, set variables (y1, y2, y3, y4) as follows:

ky2y1

y4

y3

Then we obtain the Y-seed mutation µk by

µk


y1
y2
y3
y4

 =


y1(y2 + 1)

y−1
2

y3
(
y−1
2 + 1

)−2

y4
(
y−1
2 + 1

)−1

 .

We also define the action of ν on (Q,Y ) by ν(Q,Y ) = (ν(Q), ν(Y )) where ν(Yi) = Yν−1(i).
Let γ = (Q,m, ν) be a mutation loop and (Q,Y ) be a Y-seed. Then we have the transformation

(Q(0), Y (0))
µm1−→ · · ·

µmT−→ (Q(T ), Y (T ))
ν−→ (ν(Q(T ), ν(Y (T ))),

where Y (0) stands for Y . Although Q(0) = ν(Q(T )) holds from the definition of the mutation
loop, we have Y (0) ̸= ν(Y (T )) in general. We denote ν(Y (T )) by µγ(Y ) and call it the cluster
transformation of γ. By definition, we find that µγ(Y ) ∈ FN .

2.2 Dynkin quiver Q(Xn, ℓ) and mutation loop on Q(Xn, ℓ)

For any Dynkin diagram of type Xn and positive integer ℓ ≥ 2 called level, Inoue, Iyama,
Keller, Kuniba and Nakanishi introduce a Dynkin quiver Q = Q(Xn, ℓ) and a mutation loop
γ = γ(Xn, ℓ) on Q in [3, 4]. Correspond to the type of Dynkin diagram, Dynkin quiver consists
of the following vertices:

� X = A,D,E: black vertices labeled with + or −.

� X = B,C, F : black vertices labeled with + or −, and white vertices labeled with + or −.

� X = G: black vertices labeled with + or −, and white vertices labeled with I, II, III, IV, V
or VI.

Associated with these vertices, we set the following subset of I:

� I◦+,−: the set corresponding to white vertices labeled with + or −.

� I•+,−: the set corresponding to black vertices labeled with − or −.

� I◦I,II: the set corresponding to white vertices labeled with I or II.
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Furthermore, the permutation ν on Q is given as a folding induced by symmetry of white vertices
with respect to black vertices. We define the two compositions of mutation

µ+ =
∏

k∈I•+∪I◦+∪I◦I

µk, µ− =
∏

k∈I•−∪I◦II

µk.

In [3, 4], the following property is shown.

Lemma 2.5. Let Q = Q(Xn, ℓ) and ν be the permutation of vertices in Q. Consider the
transformation

Q
µ+−→ Q′ µ−−→ Q′′.

Then Q′ and Q′′ are independent on orders of the mutations in µ+ and µ−. Furthermore, we
have Q = ν(Q′′).

Therefore, the lemma suggests that γ(Xn, ℓ) =
(
Q(Xn, ℓ),

(
I•+∪I◦+∪I◦I , I

•
−∪I◦II

)
, ν
)
is a muta-

tion loop. Note that
(
I•+∪ I◦+∪ I◦I , I

•
−∪ I◦II

)
stands for a sequence obtained by lining up elements

in I•+ ∪ I◦+ ∪ I◦I and I•− ∪ I◦II. The cluster transformation µγ = ν ◦ µ− ◦ µ+ has the following
periodicity.

Theorem 2.6 ([3, 4, 7]). For the mutation loop γ = γ(Xn, ℓ), we have

µt(ℓ+h∨)
γ (Y ) = Y

on FN , where h∨ is the dual Coxeter number of Xn and t is given by

t =


1, Xn = An, Dn, E6,7,8,

2, Xn = Bn, Cn, F4,

3, Xn = G2.

If we restrict the level to 2, then we obtain Dynkin quivers Q(Xn, 2) and permutations ν
as in Figure 1. Note that the permutation ν of vertices is expressed by arrow ↠ in the figure.
Namely, Dynkin quivers for simply-laced types have the identity as ν.

2.3 Q-systems and Y-systems

Then we review the notions of restricted Q-systems and restricted constant Y-systems. Notations
follow those used in [9]. Let ∆ be a root system of type Xn with a normalize inner product so
that ⟨α, α⟩ = 2 for long roots α. Let ∆+, ∆long and ∆short be the set of positive roots, long
roots and short loots, respectively. For the simple root αi, we define a integer ti by

ti =
2

⟨αi, αi⟩

for i = 1, . . . , n. Set

H = {(i,m) | 1 ≤ i ≤ n, 1 ≤ m} ⊃ Hℓ = {(i,m) | 1 ≤ i ≤ n, 1 ≤ m ≤ tiℓ− 1}.

Let C = (Ci,j)1≤i,j≤n be the Cartan matrix of type Xn. Then we define the number associated
with the pair (i,m), (j, k) ∈ H by

Gim,jk =


−Cj,i(δm,2k−1 + 2δm,2k + δm,2k+1), ti/tj = 2,

−Cj,i(δm,3k−2 + 2δm,3k−1 + 3δm,3k + 2δm,3k+1 + δm,3k+2, ti/tj = 3,

−Ci,jδtjm,tik, otherwise.
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Figure 1. Dynkin quivers Q(Xn, 2).

The unrestricted Q-system of type Xn is the set of algebraic relations on the variables
{
Q

(i)
m |

(i,m) ∈ H
}
which has the form(

Q(i)
m

)2
= Q

(i)
m−1Q

(i)
m+1 +

(
Q(i)

m

)2 ∏
(j,k)∈H

(
Q

(j)
k

)Gim,jk ,

where Q
(0)
m = Q

(i)
0 = 1. By restricting the index set H to Hℓ, we obtain the level ℓ restricted

Q-system. Namely, it is the algebraic relation among the variables
{
Q

(i)
m | (i,m) ∈ Hℓ

}
such that(

Q(i)
m

)2
= Q

(i)
m−1Q

(i)
m+1 +

(
Q(i)

m

)2 ∏
(j,k)∈Hℓ

(
Q

(j)
k

)Gim,jk ,

where Q
(0)
m = Q

(i)
0 = Q

(i)
tiℓ

= 1. Then the level ℓ restricted constant Y-system of type Xn is the
set of algebraic relations on

{
Y

(i)
m | (i,m) ∈ Hℓ

}
which has the form

(
Y (i)
m

)2
=

∏
(j,k)∈Hℓ

(
1 + Y

(j)
k

)Gim,jk+2δi,jδm,k(
1 +

(
Y

(i)
m−1

)−1)(
1 +

(
Y

(i)
m+1

)−1) , (2.1)
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where
(
Y

(i)
0

)−1
=
(
Y

(i)
tiℓ

)−1
= 0. Furthermore, the level ℓ restricted Q-system and the level ℓ

restricted constant Y-system have the following relationship.

Proposition 2.7 ([9, Proposition 14.1]). Suppose Q
(i)
m satisfies the level ℓ restricted Q-system

of type Xn. Then

Y (i)
m =

(
Q

(i)
m

)2∏
(j,k)∈Hℓ

(
Q

(j)
k

)Gim,jk

Q
(i)
m−1Q

(i)
m+1

is a solution of the level ℓ restricted constant Y-system of type Xn.

For restricted constant Y-systems, we know the following fact

Theorem 2.8 ([3, 4, 13]). There exists a unique solution of the level ℓ restricted constant Y-
system for type Xn satisfying Y

(i)
m ∈ R≥0 for all (i,m) ∈ Hℓ.

In order to give the explicit solution of the Q-system of classical type Xn characterized in
the Theorem 2.8, we introduce the notion of q-dimension. Let g be the simple Lie algebra of
type Xn. Let P = Zϖ1⊕· · ·⊕Zϖn be the weight lattice of type g and P+ = Z≥0ϖ1⊕· · ·⊕Z≥0ϖn

be its subset. Let χ(Vϖ) be the character of the irreducible finite dimensional representation Vϖ
of g with highest weight ϖ ∈ P+. The specialization dimq(Vϖ) of χ(Vϖ) is given by

dimq Vϖ =
∏

α∈∆+

sin π⟨α,ϖ+ρ⟩
ℓ+h∨

sin π⟨α,ρ⟩
ℓ+h∨

,

where ρ is the half sum of positive roots. This is the q-dimension at the root of unity q = e
πi

t(ℓ+h∨) .
It is known that classical character of the Kirillov–Reshetikhin module Q

(i)
m = resχq

(
W

(i)
m

)
sat-

isfies the unrestricted Q-system. Furthermore, resχq

(
W

(i)
m

)
is expressed as a linear combination

of certain characters χ(Vϖ) for ϖ ∈ P+. For simplicity, denote χ(Vϖ) by χ(ϖ). Specifically,
we have

Q(i)
m = χ(mϖi) (2.2)

for An,

Q(i)
m =

∑
χ(ki′ϖi′ + · · ·+ ki−2ϖi−2 + kiϖi),

1 ≤ i ≤ n, i′ ∈ {0, 1}, i′ ≡ i (mod 2) (2.3)

for Bn, where ϖ0 stands for 0, and the sum goes over nonnegative integers ki′ , . . . , ki−2, ki such
that ti(ki′ + · · ·+ ki−2) + ki = m.

Q(i)
m =

{∑
χ(k1ϖ1 + · · ·+ kiϖi), 1 ≤ i ≤ n− 1,

χ(mϖn), i = n
(2.4)

for Cn, where the sum goes over nonnegative integers k1, . . . , ki such that k1 + · · ·+ ki ≤ m and
kj ≡ mδi,j (mod 2) for all 1 ≤ j ≤ i,

Q(i)
m =

∑
χ(ki′ϖi′ + · · ·+ ki−2ϖi−2 + kiϖi),

1 ≤ i ≤ n− 2, i′ ∈ {0, 1}, i′ ≡ i (mod 2),

Q(i)
m = χ(mϖi), i = n− 1, n

(2.5)

for Dn, where ϖ0 stands for 0, and sum goes over nonnegative integers ki′ , . . . , ki−2, ki such that
ki′ + · · · + ki−2 + ki = m. Denote the specialization of resχq

(
W

(i)
m

)
to the q-dimension by

dimq res
(
W

(i)
m

)
. By the definition, Q

(i)
m = dimq res

(
W

(i)
m

)
still satisfies the unrestricted Q-system.

Then, for classical types Xn, we have the following truncation.
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Theorem 2.9 ([10, 11]). Q
(i)
m = dimq res

(
W

(i)
m

)
satisfies the level ℓ restricted Q-system. More-

over strongly, the following properties hold for any 1 ≤ i ≤ n:

1) Q
(i)
m = Q

(i)
tiℓ−m for 0 ≤ m ≤ tiℓ,

2) Q
(i)
m < Q

(i)
m+1 for 0 ≤ m ≤ [tiℓ/2],

3) Qtiℓ+j = 0 for 1 ≤ j ≤ tih
∨ − 1,

where [tiℓ/2] is the largest integer not exceeding tiℓ/2.

Theorem 2.9 implies Q
(i)
m > 0 for all (i,m) ∈ Hℓ. In fact, by calculating characters χ(Vϖ),

we have the following results for level 2 restricted Q-systems. For An, by using (2.2), we have

Q
(i)
1 =

i∏
j=1

n+1−i∏
k=1

s(j + k)

s(j + k − 1)

for s(x) = sin πx
n+3 . For Bn, by using (2.3), we have

Q
(i)
1 = i+ 1, 1 ≤ i ≤ n− 1, Q

(n)
1 = Q

(n)
3 =

√
2n+ 1, Q

(n)
2 = n+ 1. (2.6)

For Cn, by using (2.4), we have

Q
(i)
1 = Q

(i)
3 =

s
(
i+1
2

)
s
(
i+3
2

)
s(i+ 2)

s
(
1
2

)
s
(
3
2

)
s(2)

, 1 ≤ i ≤ n, (2.7)

Q
(i)
2 = 2

i∑
j=0

s(j)s(j + 1)s(j + 2)

s(1)s(2)s(3)
+
s(i+ 1)s(i+ 2)s(i+ 3)

s(1)s(2)s(3)
, 1 ≤ i ≤ n− 1, (2.8)

for s(x) = sin πx
n+3 . For Dn, by using (2.5), we have

Q
(i)
1 = i+ 1, 1 ≤ i ≤ n− 2, Q

(n−1)
1 = Q

(n)
1 =

√
n. (2.9)

Therefore, Y
(i)
m constructed by Proposition 2.7 with Q

(i)
m = dimq res

(
W

(i)
m

)
is real positive for

all (i,m) ∈ Hℓ.

3 Exponents of Q(Xn, ℓ)

Set Y = (Y1, . . . , YN ) as (y1, . . . , yN ) and denote by y. We review the definition of exponents
of Q(Xn, ℓ) and verify their relationship with Y-systems.

3.1 Exponents

For the rational function µγ(y), we have the following property.

Proposition 3.1 ([12]). The fixed point equation µγ(y) = y has a unique positive real solution.

Denote such a unique positive real solution by η ∈ RN . Combining Theorem 2.8, Proposi-
tion 3.1 and the explicit form of µγ(y) calculated in the next section, we find that the solution η
is given in terms of restricted constant Y-systems. That is, η is given to satisfy the relation (2.1).
Using Proposition 3.1, we are able to define the unique matrix by

Jγ(η) =

(
∂µγ(y)i
∂yj

)∣∣∣∣
y=η
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from the Jacobian of the rational function µγ(y), where µγ(y)i is the i-th component of µγ . By
the periodicity, we have Jγ(η)

t(ℓ+h∨) = I. Therefore, all eigenvalues of Jγ(η) are t(ℓ + h∨)-th
root of unities. Namely, these eigenvalues are written by

e
2πim1

t(ℓ+h∨) , . . . , e
2πimN
t(ℓ+h∨)

by using a sequence of integers 0 ≤ m1 ≤ · · · ≤ mN < t(ℓ + h∨). We call this sequence
E = (m1, . . . ,mN ) as the exponents of Q(Xn, ℓ).

3.2 Conjectural formulas

In order to describe a conjectural formula associated with the typeXn, we define two polynomials

NXn,ℓ(z) =
n∏

i=1

zt(ℓ+h∨) − 1

zt/ti − 1
, DXn,ℓ(z) = Dlong

Xn,ℓ
(z)Dshort

Xn,ℓ (z),

where the polynomials Dlong
Xn,ℓ

(z) and Dshort
Xn,ℓ

(z) are defined by

Dlong
Xn,ℓ

(z) =
∏

α∈∆long

(
zt − e

2πi⟨ρ,α⟩
ℓ+h∨

)
, Dshort

Xn,ℓ (z) =
∏

α∈∆short

(
z − e

2πi⟨ρ,α⟩
ℓ+h∨

)
.

The following conjecture is stated by Mizuno.

Conjecture 3.2 ([12, Conjecture 3.8]). Let Xn be a finite type Dynkin diagram and ℓ be a pos-
itive integer such that ℓ ≥ 2. Let γ = γ(Xn, ℓ) be the mutation loop on the quiver Q(Xn, ℓ).
Then the following identity holds:

det(zI − Jγ(η)) =
NXn,ℓ(z)

DXn,ℓ(z)
.

Remark 3.3. This conjecture has been proven by Mizuno for γ(A1, ℓ) and γ(An, 2).

By this identity, we obtain a relationship with the theory of cluster algebras and the one of
affine Lie algebras. See [12].

4 Main results

From now, we assume that level ℓ is equal to 2. We treat the case that the rank of Xn is even,
since the argument for the odd rank is parallel to the one for the even rank.

4.1 Type Bn

Set n as 2l. For the type B2l (l ≥ 1), set

y =
(
y
(1)
1 , . . . , y

(2l−1)
1 , y

(2l)
1 , y

(2l)
2 , y

(2l)
3 , y

(2l+1)
1 , . . . , y

(4l−1)
1

)
,



Note on Exponents Associated with Y-Systems 9

where the variable y
(i)
j corresponds to the i-th vertex from the left and the j-th vertex from

the top of Q(B2l, 2). Now we have the cluster transformation as follows:

y
(2i−1)
1

y
(2i)
1

y
(2l−1)
1

y
(2l)
1,3

y
(2l)
2

y
(2l+1)
1

y
(2l+2i)
1

y
(2l+2i+1)
1


µ+7→



y
(2i−1)
1

(
y
(2i−2)
1 + 1

)(
y
(2i)
1 + 1

)(
y
(2i)
1

)−1

y
(2l−1)
1

(
y
(2l−2)
1 + 1

)(
y
(2l)
1 + 1

)(
y
(2l)
3 + 1

)(
y
(2l)
1,3

)−1

y
(2l)
2

((
y
(2l)
1

)−1
+ 1
)−1((

y
(2l)
3

)−1
+ 1
)−1(

y
(2l+1)
1 + 1

)(
y
(2l+1)
1

)−1

y
(2l+2i)
1

(
y
(2l+2i−1)
1 + 1

)(
y
(2l+2i+1)
1 + 1

)(
y
(2l+2i+1)
1

)−1



µ−7→



(
µ+(y)

(2i−1)
1

)−1

µ+(y)
(2i)
1

µ+(y)
(2l−1)
1

(
µ+(y)

(2l)
2 + 1

)
µ+(y)

(2l)
1,3

((
µ+(y)

(2l)
2

)−1
+ 1
)−1(

µ+(y)
(2l)
2

)−1

µ+(y)
(2l+1)
1

(
µ+(y)

(2l)
2 + 1

)(
µ+(y)

(2l+2i)
1

)−1

µ+(y)
(2l+2i+1)
1


ν7→



µ−µ+(y)
(4l−2i+1)
1

µ−µ+(y)
(4l−2i)
1

µ−µ+(y)
(2l+1)
1

µ−µ+(y)
(2l)
1,3

µ−µ+(y)
(2l)
2

µ−µ+(y)
(2l−1)
1

µ−µ+(y)
(2(l−i))
1

µ−µ+(y)
(2(l−i)−1)
1


for i = 1, . . . , l − 1. Here y

(0)
1 stands for 0. For a solution of the level 2 restricted constant

Y-system of type B2l, if we take η =
(
η
(1)
1 , . . . , η

(2l−1)
1 , η

(2l)
1 , η

(2l)
2 , η

(2l)
3 , η

(2l+1)
1 , . . . , η

(4l−1)
1

)
to be

η
(2i−1)
1 =

(
Y

(2i−1)
1

)−1
, η

(2i)
1 = Y

(2i)
1 , 1 ≤ i ≤ l − 1,

η
(2l−1)
1 =

(
Y

(2l−1)
1

)−1(
Y

(2l)
2 + 1

)
, η

(2l)
1,3 = Y

(2l)
1,3 , η

(2l)
2 =

(
Y

(2l)
2

)−1
,

η
(2l+1)
1 = Y

(2l−1)
1 , η

(j)
1 =

(
η
(4l−j)
1

)−1
, 2l + 2 ≤ j ≤ 4l − 1,

then we find that η is the solution of the fixed point equation µγ(y) = y. Furthermore, using
Proposition 2.7 and (2.6), we are able to calculate the value of

{
Y

(i)
m | (i,m) ∈ H2

}
satisfy-

ing the condition of Theorem 2.8 as follows:

Y
(i)
1 = i(i+ 2), 1 ≤ i ≤ 2l − 1, Y

(2l)
1 = Y

(2l)
3 =

2l

2l + 1
, Y

(2l)
2 =

4l2

4l + 1
.

For a nonzero complex number λ, we consider the equations involving (ϕi)
4l+1
i=1 such that

4l+1∑
j=1

Jγ(η)i,jϕj = λϕi (4.1)

with the boundary conditions given by ϕ0 = ϕ4l+2 = 0. Upon calculating the Jacobian, we
derive the relations

λϕ2k−1 = − ϕ4l−2k+3

(4k2 − 1)2
, (4.2)

λϕ2k =
kϕ4l−2k+1

k + 1
+ 16k2(k + 1)2ϕ4l−2k+2 +

(k + 1)ϕ4l−2k+3

k
, (4.3)
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λϕ2l+2k+2 = − ϕ2l−2k

16(l − k)2(l − k + 1)2
, (4.4)

λϕ2l+2k+3 =
(2l − 2k + 1)ϕ2l−2k−2

2l − 2k − 1
+ (2l − 2k − 1)2(2l − 2k + 1)2ϕ2l−2k−1

+
(2l − 2k − 1)ϕ2l−2k

2l − 2k + 1
(4.5)

for k = 1, . . . , l − 1 and

λϕ2l−1 =
2l(2l + 1)(ϕ2l + ϕ2l+2)

(2l − 1)(4l + 1)2
+

16l4ϕ2l+1

(4l2 − 1)(4l + 1)2
− 2ϕ2l+3

(2l − 1)2(2l + 1)(4l + 1)
, (4.6)

λϕ2l,2l+2 = −
2lϕ2l,2l+2

2l + 1
+

8l3ϕ2l+1

(2l + 1)3
+
ϕ2l+2,2l

2l + 1
+

(4l + 1)ϕ2+3

2l(2l + 1)3
, (4.7)

(λ+ 1)ϕ2l+1 = −(2l + 1)2(ϕ2l + ϕ2l+2)

8l3
− (4l + 1)ϕ2l+3

16l4
, (4.8)

λϕ2l+3 =
(2l + 1)ϕ2l−2

2l − 1
+ (2l − 1)2(4l + 1)ϕ2l−1 +

(
4l2 − 1

)
(ϕ2l + ϕ2l+2)

+
16l4(2l − 1)ϕ2l+1

(2l + 1)(4l + 1)
+

(2l − 1)ϕ2l+3

2l + 1
. (4.9)

Then we have the following lemma.

Lemma 4.1. Set ϕ2l = ϕ2l+2 = 1. Then we have

ϕ2l−2k−1 =
Φ2l−2k−1

λ

×
(
(2l − 2k + 1)

(
λ2k+1 + λ2k + λ−2k + λ−(2k+1)

)
+ 2
(
λ2k−1 + · · ·+ λ−(2k−1)

))
,

ϕ2l−2k = 2Φ2l−2k

(
(l − k + 1)

(
λ2k + λ2k−1 + λ−(2k−1) + λ−2k

)
+ λ2(k−1) + · · ·+ λ−2(k−1)

)
,

ϕ2l−1 = − 2l(2l + 1)2

(2l − 1)2(4l + 1)2
(
2 + (2l + 1)λ−1 + (2l + 1)λ−2

)
,

ϕ2l+1 = −(2l + 1)3

8l3
(
1 + λ−1

)
,

ϕ2l+3 =
2l(2l + 1)2

4l + 1

(
(2l + 1)

(
λ+ λ−1

)
+ 4n

)
,

ϕ2l+2k+2 = −λ(2l − 2k − 1)2(2l − 2k + 1)2ϕ2l−2k,

ϕ2l+2k+3 = − ϕ2l−2k−1

16λ(l − k)2(l − k + 1)2

for k = 1, . . . , l − 1, where Ψm are rational numbers given by

Φ2l−2k−1 = − 2(l − k)(2l + 1)2

(2l − 2k − 1)2(2l − 2k + 1)2(4l + 1)
,

Φ2l−2k =
(2l − 2k + 1)(2l + 1)2

4l + 1
.

Furthermore, such numbers satisfy the boundary condition if and only if λ = ζa for primitive
(4l + 1)-th root of unity ζ and a = 1, . . . , 4l.

Proof. The proof is given by direct calculation using relations (4.2)–(4.9) under the assumption
ϕ2l = ϕ2l+2 = 1. Then the boundary condition is provided by

ϕ0 =
2(2 + 1)2

4l + 1
λ−2lλ

4l+1 − 1

λ− 1
= 0.
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Therefore, we conclude that these numbers satisfy the boundary condition if and only if λ = ζa

for a = 1, . . . , 4l. ■

Remark 4.2. Now, the numbers ϕ = (0, . . . , 0, ϕ2l, 0, ϕ2l+2, 0, . . . , 0) determined from the tuple
(λ, ϕ2l, ϕ2l+2) = (−1, 1,−1) also satisfies (4.1) and the boundary condition.

By Lemma 4.1 and Remark 4.2, it is understood that

Jγ(η)ψ = λψ

when the vector ψ =
(
ψ
(1)
1 , . . . , ψ

(2l−1)
1 , ψ

(2l)
1 , ψ

(2l)
2 , ψ

(2l)
3 , ψ

(2l+1)
1 , . . . , ψ

(4l−1)
1

)
is defined as

ψ
(i)
1 = ϕi, 1 ≤ i ≤ 2l − 1,

ψ(2l)
m = ϕ2l+m−1, m = 1, 2, 3,

ψ
(j)
1 = ϕj+2, 2l + 1 ≤ j ≤ 4l − 1.

The quiver Q(B2l−1, 2), l ≥ 2, is obtained by removing one white vertex at each end
of Q(B2l, 2). Note that we label the vertices from 1 to 4l − 3 from left horizontally. In view of
this, the formulas of µ+ in the beginning of Section 4.1 for B2l−1 are obtained by replacing y

(2i+1)
m(

resp. y
(2i)
m

)
with y

(2i)
m

(
resp. y

(2i−1)
m

)
. Hence, the calculations are parallel to the case of B2l.

Namely, we have

det(zI − Jγ(η)) = (z + 1)
z2n+1 − 1

z − 1
(4.10)

for the mutation loop γ = γ(Bn, 2).

Theorem 4.3. For the mutation loop γ = γ(Bn, 2), we have

det(zI − Jγ(η)) =
NBn,2(z)

DBn,2(z)
.

Proof. Let ϵ1, . . . , ϵn be the standard basis of the n-dimensional Euclidean space Rn so that
⟨ϵi, ϵj⟩ = δi,j . Since the root system of the type Bn is given by

∆ = {±ϵi ± ϵj , 1 ≤ i < j ≤ n, ±ϵi, 1 ≤ i ≤ n},

we have

NBn,2(z) =

(
z4n+2 − 1

)n
(z2 − 1)n−1(z − 1)

, DBn,2(z) =

(
z4n+2 − 1

z2 − 1

)n−1

·
∏

1≤k≤2n+1
k ̸=n+1

(
z − ζ

2k−1
2
)
.

Therefore, the right-hand side becomes

NBn,2(z)

DBn,2(z)
= (z + 1)

2n∏
k=1

(
z − ζk

)
= (z + 1)

z2n+1 − 1

z − 1

and coincides with (4.10). ■
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4.2 Type Dn

The argument for the type Dn is similar to the type Bn. Set n as 2l. For the type D2l, l ≥ 2,

set y =
(
y
(1)
1 , . . . , y

(2l)
1

)
. Now we have the cluster transformation as follows:

y
(2i−1)
1

y
(2i)
1

y
(2l−2)
1

y
(2l−1)
1

y
(2l)
1


µ+7→


y
(2i−1)
1

(
y
(2i−2)
1 + 1

)(
y
(2i)
1 + 1

)(
y
(2i)
1

)−1(
y
(2l−2)
1

)−1

y
(2l−1)
1

(
y
(2l−2)
1 + 1

)
y
(2l)
1

(
y
(2l−2)
1 + 1

)



µ−7→



(
µ+(y)

(2i−1)
1

)−1

µ+(y)
(2i)
1

(
µ+(y)

(2i−1)
1 + 1

)(
µ+(y)

(2i+1)
1 + 1

)
µ+(y)

(2l−2)
1

(
µ+(y)

(2l−3)
1 + 1

)(
µ+(y)

(2l−1)
1 + 1

)(
µ+(y)

(2l)
1 + 1

)(
µ+(y)

(2l−1)
1

)−1(
µ+(y)

(2l)
1

)−1


for i = 1, . . . , l − 1. For a solution of the level 2 restricted constant Y-system of type D2l, if we
take η =

(
η
(1)
1 , . . . , η

(2l)
1

)
to be

η
(2i−1)
1 =

(
Y

(2i−1)
1

)−1
, η

(2i)
1 = Y

(2i)
1 , 1 ≤ i ≤ l − 1,

η
(2l−1)
1 =

(
Y

(2l−1)
1

)−1
, η

(2l)
1 =

(
Y

(2l)
1

)−1
,

then we find that η is the solution of the fixed point equation µγ(y) = y. Now, using Propo-
sition 2.7 and (2.9), we are able to calculate the value of

{
Y

(i)
m | (i,m) ∈ H2

}
satisfying Theo-

rem 2.8 as follows:

Y
(i)
1 = i(i+ 2), 1 ≤ i ≤ 2l − 2, Y

(2l−1)
1 = Y

(2l)
1 = 2l − 1.

For a nonzero complex number λ, we consider the equations involving (ϕi)
2l
i=1 such that

2l∑
j=1

Jγ(η)i,jϕj = λϕi (4.11)

with the boundary condition given by ϕ0 = 0. In a similar manner to type Bn, we derive the
relations

(λ+ 1)ϕ2k−1 = − ϕ2k−2

(2k − 1)3(2k + 1)
− ϕ2k

(2k − 1)(2k + 1)3
, 1 ≤ k ≤ l − 1, (4.12)

λϕ2k =
(k + 1)(2k + 1)ϕ2k−2

k(2k − 1)
+

(k + 1)(2k − 1)2(2k + 1)2ϕ2k−1

k
+

(4k(k + 1)− 1)ϕ2k
4k(k + 1)

+
k(2k + 1)2(2k + 3)2ϕ2k+1

k + 1
+
k(2k + 1)ϕ2k+2

(k + 1)(2k + 3)
, 1 ≤ k ≤ l − 2, (4.13)

λϕ2l−2 =
l(2l − 1)ϕ2l−4

(l − 1)(2l − 3)
+
l(2l − 3)2(2l − 1)2ϕ2l−3

l − 1
+

(2l − 3)ϕ2l−2

l − 1

+ 2(l − 1)(2l − 1)2(ϕ2l−1 + ϕ2l), (4.14)

(λ+ 1)ϕ2l−1,2l = − ϕ2l−2

(2l − 1)3
. (4.15)

Then we have the following lemma.



Note on Exponents Associated with Y-Systems 13

Lemma 4.4. Set ϕ2l = ϕ2l−1 = 1. Then we have

ϕ2l−2k−1 = Φ2l−2k−1

(
(2l − 2k + 1)

(
λk + λ−k

)
+ 2
(
λk−1 + λ−(k−1)

)
+ · · ·+ 2

)
,

ϕ2l−2k = Φ2l−2k

(
(l − k + 1)λk + λk−1 + · · ·+ λ−(k−2) + (l − k + 1)λ−(k−1)

)
,

where Φm are rational numbers given by

Φ2l−2k−1 =
(l − k)(2l − 1)2

l(2l − 2k − 1)2(2l − 2k + 1)2
,

Φ2l−2k =
(2l − 2k + 1)(2l − 1)2

l
.

Furthermore, such numbers satisfy the boundary condition if and only if λ = ζa for primitive
2l-th root of unity ζ and a = 1, . . . , 2l − 1.

Proof. The proof is parallel to type Bn, since we have the relations (4.12)–(4.15). Then the
boundary condition is provided by

ϕ0 =
2(2l − 1)2

2l
λ−(l−1)λ

2l − 1

λ− 1
= 0.

Therefore, we conclude that these numbers satisfy the boundary condition if and only if λ = ζa

for a = 1, . . . , 2l − 1. ■

Remark 4.5. Now, the numbers ϕ = (0, . . . , 0, ϕ2l−1, ϕ2l) determined from the tuple

(λ, ϕ2l−1, ϕ2l) = (−1, 1,−1)

also satisfies (4.11) and the boundary condition.

By Lemma 4.4 and Remark 4.5, it is understood that

Jγ(η)ψ = λψ

when we take the vector ψ =
(
ψ
(1)
1 , . . . , ψ

(2l)
1

)
to be ψ

(i)
1 = ϕi for i = 1, . . . , 2l.

The quiver Q(D2l−1, 2), l ≥ 3, is obtained by removing one black vertex at leftmost of
Q(D2l, 2). Hence in a similar manner to the case Bn, the calculations of γ(D2l−1, 2) are parallel
to the case D2l. Thus, we have

det(zI − Jγ(η)) = (1 + z)
zn − 1

z − 1
(4.16)

for the mutation loop γ = γ(Dn, 2).

Theorem 4.6. For the mutation loop γ = γ(Dn, 2), we have

det(zI − Jγ(η)) =
NDn,2(z)

DDn,2(z)
.

Proof. Since the root system of the type Dn is given by

∆ = {±ϵi ± ϵj , 1 ≤ i < j ≤ n},

we have

NDn,2(z) =

(
z2n − 1

z − 1

)n

, DDn,2(z) =

(
z2n − 1

z − 1

)n

·
2n−1∏
k=1

(
z − ζk

)−θ(k)−δk,n ,

where θ(k) = 1 (resp. θ(k) = 0) if k is even (resp. odd). Therefore, the right-hand side becomes

NDn,2(z)

DDn,2(z)
= (z + 1)

2n−1∏
k=1

(
z − ζk

)θ(k)
= (z + 1)

zn − 1

z − 1

and coincides with (4.16). ■
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4.3 Type Cn

In a similar manner to the type Bn, set y =
(
y
(1)
1 , y

(1)
2 , y

(1)
3 , . . . , y

(2l−1)
3 , y

(2l)
1 , y

(2l+1)
1

)
for the

type C2l, l ≥ 2, where y
(2l)
1

(
resp. y

(2l+1)
1

)
corresponds to the white vertex with label + (resp. −).

Now we have the cluster transformation as follows:

y
(2i−1)
1,3

y
(2i−1)
2

y
(2i)
1,3

y
(2i)
2

y
(2l−1)
1,3

y
(2l−1)
2

y
(2l)
1

y
(2l+1)
1


µ+7→



(
y
(2i−1)
1,3

)−1

y
(2i−1)
2

(
y
(2i−2)
2 + 1

)(
y
(2i)
2 + 1

)((
y
(2i−1)
1

)−1
+ 1
)−1((

y
(2i−1)
3

)−1
+ 1
)−1

y
(2i)
1,3

(
y
(2i−1)
1,3 + 1

)(
y
(2i+1)
1,3 + 1

)((
y
(2i)
2

)−1
+ 1
)−1(

y
(2i)
2

)−1(
y
(2l−1)
1,3

)−1

y
(2l−1)
2

(
y
(2l−2)
2 + 1

)(
y
(2l)
1 + 1

)((
y
(2l−1)
1

)−1
+ 1
)−1((

y
(2l−1)
3

)−1
+ 1
)−1(

y
(2l)
1

)−1

y
(2l+1)
1

(
y
(2l−1)
1 + 1

)(
y
(2l−1)
3 + 1

)



µ−7→



µ+(y)
(2i−1)
1,3

(
µ+(y)

(2i−2)
1,3 + 1

)(
µ+(y)

(2i)
1,3 + 1

)((
µ+(y)

(2i−1)
2

)−1
+ 1
)−1(

µ+(y)
(2i−1)
2

)−1(
µ+(y)

(2i)
1,3

)−1

µ+(y)
(2i)
2

(
µ+(y)

(2i−1)
2 + 1

)(
µ+(y)

(2i+1)
2 + 1

)
×
((
µ+(y)

(2i)
1

)−1
+ 1
)−1((

µ+(y)
(2i)
3

)−1
+ 1
)−1

µ+(y)
(2l−1)
1,3

(
µ+(y)

(2l−2)
1,3 + 1

)((
µ+(y)

(2l−1)
2

)−1
+ 1
)−1(

µ+(y)
(2l−1)
2

)−1

µ+(y)
(2l)
1

(
µ+(y)

(2l−1)
2 + 1

)
µ+(y)

(2l+1)
1

(
µ+(y)

(2l−1)
2 + 1

)


ν7→

µ−µ+(y)
(j)
1,2,3

µ−µ+(y)
(2l+1)
1

µ−µ+(y)
(2l)
1


for i = 1, . . . , l − 1 and j = 1, . . . , 2l − 1. Here y

(0)
2 stands for 0. For a solution of the level 2

restricted constant Y-system of type C2l, if we take η =
(
η
(1)
1 , . . . , η

(2l−1)
3 , η

(2l)
1 , η

(2l+1)
1

)
to be

η(i)m =

{
Y

(i)
m , i+m ≡ 0 (mod 2),(
Y

(i)
m

)−1
, i+m ≡ 1 (mod 2),

1 ≤ i ≤ 2l − 1, m = 1, 2, 3,

η
(2l)
1 = Y

(2l)
1 , η

(2l+1)
1 =

(
Y

(2l)
1

)−1(
Y

(2l−1)
2 + 1

)
,

then we find that η is the solution of the fixed point equation µγ(y) = y. Since the positive
real solution of the restricted constant Y-system of type C2l with level 2 is complex (cf. (2.7)
and (2.8)), we will proceed the argument using the notation {Y (i)

m | (i,m) ∈ H2}.
We are able to decompose the Jacobian Jγ(y) into

Jγ(y) = (I − E6l−2,6l−2 − E6l−1,6l−1 + E6l−2,6l−1 + E6l−1,6l−1)J
−
γ (y′)J+

γ (y)

by the chain rule, where the leftmost matrix in the right-hand side expresses the action of ν, Ei,j

is the matrix unit and y′ = µ+(y). Denote µ+(η) by ξ =
(
ξ
(1)
1 , . . . , ξ

(2l−1)
3 , ξ

(2l)
1 , ξ

(2l+1)
1

)
. Then

we have ξ
(i)
m =

(
η
(i)
m

)−1
.

Let v1, . . . , v6l−1 be the standard basis of C6l−1. For the vector

ψ =
∑

1≤i≤2l−1,m=1,2,3

ψ(i)
m v3(i−1)+m + ψ

(2l)
1 v6l−2 + ψ

(2l+1)
1 v6l−1,
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we set

ψ′ = J+
γ (η)ψ =

∑
1≤i≤2l−1
m=1,2,3

ψ(i)
m

′
v3(i−1)+m + ψ

(2l)
1

′
v6l−2 + ψ

(2l+1)
1

′
v6l−1,

ψ′′ = J−
γ (ξ)ψ′ =

∑
1≤i≤2l−1
m=1,2,3

ψ(i)
m

′′
v3(i−1)+m + ψ

(2l)
1

′′
v6l−2 + ψ

(2l+1)
1

′′
v6l−1.

By direct calculation, we obtain the relations

ψ
(2k−1)
1,3

′
= −

ψ
(1)
1,3(

Y
(2k−1)
1

)2 , (4.17)

ψ
(2k−1)
2

′′
= − ψ

(2k−1)
2

′(
Y

(2k−1)
2

)2 (4.18)

for k = 1, . . . , l, and

ψ
(2k−1)
2

′
= Y

(2k−1)
2 (4.19)

×

(
ψ
(2k−2)
2

Y
(2k−2)
2 + 1

+
ψ
(2k−1)
1 + ψ

(2k−1)
3

Y
(2k−1)
1

(
Y

(2k−1)
1 + 1

) + Y
(2k−1)
2 ψ

(2k−1)
2 +

ψ
(2k)
2

Y
(2k)
2 + 1

)
,

ψ
(2k)
1,3

′
= Y

(2k)
1

(
ψ
(2k−1)
1,3

Y
(2k−1)
1 + 1

+ Y
(2k)
1 ψ

(2k)
1,3 +

ψ
(2k)
2

Y
(2k)
2

(
Y

(2k)
2 + 1

) + ψ
(2k+1)
1,3

Y
(2k+1)
1 + 1

)
, (4.20)

ψ
(2k)
2

′
= − ψ

(2k)
2(

Y
(2k)
2

)2 , (4.21)

ψ
(2k−1)
1,3

′′
= Y

(2k−1)
1 (4.22)

×

(
ψ
(2k−2)
1,3

′

Y
(2k−2)
2 + 1

+ Y
(2k−1)
1 ψ

(2k−1)
1,3

′
+

ψ
(2k−1)
2

′

Y
(2k−1)
2

(
Y

(2k−1)
2 + 1

) + ψ
(2k)
1,3

′

Y
(2k)
1 + 1

)
,

ψ
(2k)
1,3

′′
= −

ψ
(2k)
1,3

′(
Y

(2k)
1

)2 , (4.23)

ψ
(2k)
2

′′
= Y

(2k)
2

(
ψ
(2k−1)
2

′

Y
(2k−1)
2 + 1

+
ψ
(2k)
1

′
+ ψ

(2k)
3

′

Y
(2k)
1

(
Y

(2k)
1 + 1

) + Y
(2k)
2 ψ

(2k)
2

′
+

ψ
(2k+1)
2

′

Y
(2k+1)
2 + 1

)
(4.24)

for k = 1, . . . , l − 1, and

ψ
(2l−1)
2

′
= Y

(2l−1)
2 (4.25)

×

(
ψ
(2l−2)
2

Y
(2l−2)
2 + 1

+
ψ
(2l−1)
1 + ψ

(2l−1)
3

Y
(2l−1)
1

(
Y

(2l−1)
1 + 1

) + Y
(2l−1)
2 ψ

(2l−1)
2 +

ψ
(2l)
1

Y
(2l)
1 + 1

)
,

ψ
(2l−1)
1,3

′′
= Y

(2l−1)
1

(
ψ
(2l−2)
1,3

′

Y
(2l−2)
1 + 1

+ Y
(2l−1)
1 ψ

(2l−1)
1,3

′
+

ψ
(2l−1)
2

′

Y
(2l−1)
2

(
Y

(2l−1)
2 + 1

)), (4.26)

ψ
(2l)
1

′′
=
ψ
(2l−1)
2

′

Y
(2l)
1

−
(
Y

(2l−1)
2 + 1

)
ψ
(2l)
1(

Y
(2l)
1

)2 , (4.27)
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ψ
(2l+1)
1

′′
= Y

(2l)
1

(
ψ
(2l−1)
2

′

Y
(2l−1)
2 + 1

+
ψ
(2l−1)
1 + ψ

(2l−1)
3

Y
(2l−1)
1 + 1

+
Y

(2l)
1 ψ

(2l+1)
1

Y
(2l−1)
2 + 1

)
. (4.28)

Set u(k) = v3k−2 − v3k and w(k) = v3k−2 + v3k for k = 1, . . . , 2l−1. We consider the subspaces

U =
2l−1⊕
k=1

Cu(k), W =
2l−1⊕
k=1

Cw(k) ⊕
2l−1⊕
k=1

Cv3k−1 ⊕ Cv6l−2 ⊕ Cv6l−1.

Using (4.17)–(4.28), we find that these subspace are invariant under the action of Jγ(η). There-
fore, we have

Jγ(η)u = u

(
K̂ 0

0 L̂

)
for matrices K̂ ∈ M2l−1(C) and L̂ ∈ M4l(C), where u =

(
u(1), . . . , u(2l−1), w(1), v2, . . . , w

(2l−1),
v6l−4, v6l−2, v6l−1

)
.

For simplicity, we define the notations R
(i)
m and S(i) by

R(i)
m = Y (i)

m Y (i+1)
m

(
Y (i)
m + 1

)−1(
Y (i+1)
m + 1

)−1
, S(i) = 2

(
Y

(i)
1 + 1

)−1(
Y

(i)
2 + 1

)−1
.

By (4.17)–(4.28), we obtain the representation matrix K̂ by

K̂i,j =



−1, j ≡ 0 (mod 2), i = j,

Y
(i)
1

(
Y

(j)
1

)2(
Y

(j)
1 + 1

)−1
, j ≡ 0 (mod 2), i = j ± 1,

−1 +R
(j−1)
1 +

(
1− δj,2l−1

)
R

(j)
1 , j ≡ 1 (mod 2), i = j,

−
(
Y

(i)
1

)−1(
Y

(j)
1 + 1

)−1
, j ≡ 1 (mod 2), i = j ± 1,

Y
(i)
1 Y

(j±1)
1

(
Y

(j)
1 + 1

)−1(
Y

(j±1)
1 + 1

)−1
, j ≡ 1 (mod 2), i = j ± 2,

0, otherwise

for i, j = 1, . . . , 2l−1. By a similar calculation, we obtain the representation matrix L̂ as follows:

L̂i,j =



−1 +R
( j−2

2
)

2 +R
( j
2
)

2 + S( j
2
), i = j,

−
(
Y

( j
2
)

1

)−1(
Y

( j
2
)

2

)−1(
Y

( j
2
)

2 + 1
)−1

, i = j − 1,

−
(
Y

( i
2
)

2

)−1(
Y

( j
2
)

2 + 1
)−1

, i = j ± 2,

Y
( i+1

2
)

1

(
Y

( j
2
)

2 + 1
)−1((

Y
( i+1

2
)

2 + 1
)−1

+ Y
( j
2
)

1

(
Y

( j
2
)

2

)−1(
Y

( j
2
)

1 + 1
)−1)

, i+ 1 = j ± 2,

Y
( j
2
±1)

2 Y
( i
2
)

2

(
Y

( j
2
)

2 + 1
)−1(

Y
( j
2
±1)

2 + 1
)−1

, i = j ± 4,

for i, j = 1, . . . , 4l − 2 such that j ≡ 0 (mod 4),

L̂i,j =



−1 +R
( j−1

2
)

1 + (1− δj,4l−3)R
( j+1

2
)

1 + S( j+1
2

), i = j,

−2
(
Y

( i
2
)

1

)−1(
Y

( i
2
)

2

)−1(
Y

( i
2
)

1 + 1
)−1

, i = j + 1,

−
(
Y

( i+1
2

)

1

)−1(
Y

( j+1
2

)

1 + 1
)−1

, i = j ± 2,

2Y
( i
2
)

2

(
Y

( j+1
2

)

1 + 1
)−1

×
((
Y

( i
2
)

1 + 1
)−1

+ Y
( j+1

2
)

2

(
Y

( j+1
2

)

1

)−1(
Y

( j+1
2

)

2 + 1
)−1)

, i− 1 = j ± 2,

Y
( j+1

2
±1)

1 Y
( i+1

2
)

1

(
Y

( j+1
2

)

1 + 1
)−1(

Y
( j+1

2
±1)

1 + 1
)−1

, i = j ± 4
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for i, j = 1, . . . , 4l − 2 such that j ≡ 1 (mod 4),

L̂i,j =


−1, i = j,

Y
( j
2
)

1 Y
( j
2
)

2

(
Y

( j
2
)

2 + 1
)−1

, i = j − 1,

Y
( i
2
)

2

(
Y

( j
2
)

2

)2(
Y

( j
2
)

2 + 1
)−1

, i = j ± 2,

for i, j = 1, . . . , 4l − 2 such that j ≡ 2 (mod 4),

L̂i,j =


−1, i = j,

2Y
( i
2
)

1 Y
( i
2
)

2

(
Y

( i
2
)

1 + 1
)−1

, i = j + 1,

Y
( i+1

2
)

1

(
Y

( j+1
2

)

1

)2(
Y

( j+1
2

)

1 + 1
)−1

, i = j ± 2

for i, j = 1, . . . , 4l − 2 such that j ≡ 3 (mod 4) and

L̂4l−1,4l−4 = Y
(2l−1)
2 Y

(2l)
1

(
Y

(2l−2)
2 + 1

)−1(
Y

(2l−1)
2 + 1

)−1
,

L̂4l,4l−4 = Y
(2l−1)
2

(
Y

(2l)
1

)−1(
Y

(2l−2)
2 + 1

)−1
,

L̂4l−1,4l−3 = 2Y
(2l)
1

(
Y

(2l−1)
1 + 1

)−1(
1 + Y

(2l−1)
2 (Y

(2l−1)
1

)−1(
Y

(2l−1)
2 + 1

)−1)
,

L̂4l,4l−3 = 2Y
(2l−1)
2

(
Y

(2l−1)
1

)−1(
Y

(2l)
1

)−1(
Y

(2l−1)
1 + 1

)−1
,

L̂4l−1,4l−2 =
(
Y

(2l−1)
2

)2
Y

(2l)
1

(
Y

(2l−1)
2 + 1

)−1
,

L̂4l,4l−2 =
(
Y

(2l−1)
2

)2(
Y

(2l)
1

)−1
,

L̂4l−4,4l−1 = Y
(2l−2)
2 Y

(2l−1)
2

(
Y

(2l−1)
2 + 1

)−1(
Y

(2l)
1 + 1

)−1
,

L̂4l−3,4l−1 = Y
(2l−1)
1

(
Y

(2l−1)
2 + 1

)−1(
Y

(2l)
1 + 1

)−1
,

L̂4l−2,4l−1 = −
(
Y

(2l−1)
2

)−1(
Y

(2l)
1 + 1

)−1
,

L̂4l−1,4l−1 = Y
(2l−1)
2 Y

(2l)
1

(
Y

(2l−1)
2 + 1

)−1(
Y

(2l)
1 + 1

)−1
,

L̂4l,4l−1 = Y
(2l−1)
2

(
Y

(2l)
1

)−1(
Y

(2l)
1 + 1

)−1 −
(
Y

(2l−1)
2 + 1

)(
Y

(2l)
1

)−2
,

L̂4l−1,4l =
(
Y

(2l)
1

)2(
Y

(2l−1)
2 + 1

)−1
,

L̂i,j = 0, otherwise.

Next we consider the matrix K̂ − λ2I. We are able to simplify the matrix K̂ − λ2I by the
row or column operations taking the following steps:

1. Add Y
(2k−1)
1

(
Y

(2k)
1

)2(
Y

(2k)
1 + 1

)−1
times of the 2k-th row to the (2k − 1)-th row and(

Y
(2k)
1

)2
Y

(2k+1)
1

(
Y

(2k)
1 +1

)−1
times of the 2k-th row to the (2k+1)-th row for k = 1, . . . , l−1.

2. Multiply the (2k− 1)-th row by −λ−1 for k = 1, . . . , l and the 2k-th row by −
(
Y

(2k)
1

)2
for

k = 1, . . . , l − 1.

3. Multiply the 2k-th column by λ−1
(
Y

(2k)
1

)−2
for k = 1, . . . , l − 1.

Denote the matrix obtained by these operations by K. For the matrix L̂−λ2I, we apply similar
operations. Namely, the matrix L̂− λ2I is simplified to the matrix L by the following steps:

1. Add
(
Y

(2k)
1

)2
Y

(2k+1)
1

(
Y

(2k)
1 + 1

)−1
times of the (4k − 1)-th row to the (4k + 1)-th row,

Y
(2k−1)
1

(
Y

(2k)
1

)2(
Y

(2k)
1 + 1

)−1
times of the (4k − 1)-th row to the (4k − 3)-th row for

k = 1, . . . , l − 1 and Y
(2k−1)
1 Y

(2k−1)
2

(
Y

(2k−1)
2 + 1

)−1
times of the (4k − 2)-th row to the

(4k − 3)-th row for k = 1, . . . , l.
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2. Add
(
Y

(2k−1)
2

)2
Y

(2k)
2

(
Y

(2k−1)
2 + 1

)−1
times of the (4k−2)-th row, 2Y

(2k)
1 Y

(2k)
2

(
Y

(2k)
1 + 1

)−1

times of the (4k − 1)-th row and Y
(2k)
2

(
Y

(2k+1)
2

)2(
Y

(2k+1)
2 + 1

)−1
times of the (4k + 2)-th

row to the 4k-th row for k = 1, . . . , l − 1.

3. Add
(
Y

(2l−1)
2

)2
Y

(2l)
1

(
Y

(2l−1)
2 + 1

)−1
times of the (4l− 2)-th row to the (4l− 1)-th row and(

Y
(2l−1)
2

)2(
Y

(2l)
1

)−1
times of the (4l − 2)-th row to the 4l-th row.

4. Add
(
Y

(2l)
1

)2(
Y

(2l−1)
2 + 1

)−1
times of the 4l-th row (resp. (4l−1)-th column) to the (4l−1)-

th row (resp. 4l-th column).

5. Multiply the (4k−3)-th row by −λ−1, the (4k−2)-th row by −
(
Y

(2k−1)
2

)2
for k = 1, . . . , l,

the (4k − 1)-th row by −
(
Y

(2k)
1

)2
, the 4k-th row by −λ−1 for k = 1, . . . , l − 1, and

the (4l − 1)-th row by −λ−1, the 4l-th row by −
(
Y

(2l)
1

)2
.

6. Multiply the (4k−2)-th column by λ−1
(
Y

(2k−1)
2

)−2
for k = 1, . . . , l, the (4k−1)-th column

by λ−1
(
Y

(2k)
1

)−2
for k = 1, . . . , l − 1, and the 4l-th column by λ−1

(
Y

(2l)
1

)−2
.

The quiver Q(C2l−1, 2), l ≥ 2, is obtained by removing the three leftmost black vertices
from Q(C2l, 2). Hence, in a similar manner to the case Bn, the calculations of γ(C2l−1, 2) are
parallel to the case C2l.

From now, we consider the mutation loop γ = γ(Cn, 2) and variables y =
(
y
(1)
1 , . . . , y

(n−1)
3 ,

y
(n)
1 , y

(n+1)
1

)
. The matrices K ∈Mn−1(C) and L ∈M2n(C) are given as follows:

Ki,j =


Λ, j = i,

Y
(i)
1

(
Y

(j)
1 + 1

)−1
, j = i± 1,

0, otherwise

for i, j = 1, . . . , n− 1,

Li,j =



Λ, j = i,

Y
( j
2
)

1

(
Y

( j
2
)

2

)−1(
Y

( j
2
)

2 + 1
)−1

, i ≡ 1 (mod 2), j = i+ 1,

Y
( i+1

2
)

1

(
Y

( j+1
2

)

1 + 1
)−1

, i ≡ 1 (mod 2), j = i± 2,

2Y
( i
2
)

2

(
Y

( i
2
)

1

)−1(
Y

( i
2
)

1 + 1
)−1

, i ≡ 0 (mod 2), j = i− 1,

Y
( i
2
)

2

(
Y

( j
2
)

2 + 1
)−1

, i ≡ 0 (mod 2), j = i± 2,

0, otherwise

for i, j = 1, . . . , 2n− 2 and

L2n−1,2n−3 = −2λ−1Y
(n)
1

(
Y

(n−1)
1 + 1

)−1
,

L2n−1,2n−2 = 2Y
(n)
1

(
Y

(n−1)
2 + 1

)−1
,

L2n,2n−2 = λY
(n)
1 ,

L2n−2,2n−1 = Y
(n−1)
2

(
Y

(n)
1 + 1

)−1
,

L2n−1,2n−1 = L2n,2n = Λ,

L2n,2n−1 = Y
(n−1)
2 + 1,

L2n−2,2n = λ−1Y
(n−1)
2

(
Y

(n−1)
2 + 1

)−1(
Y

(n)
1 + 1

)−1
,

L2n−1,2n =
(
Y

(n−1)
2 + 1

)−1
,

Li,j = 0, otherwise,

where Λ = λ+ λ−1. Now, we have the following conjecture.
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Conjecture 4.7. We have

1) det(K) =
∏n−1

i=1

(
Λ− 2 cos (2i+3)π

4(n+3)

)
,

2) det(L) =
∏n−2

i=1

(
Λ− 2 cos (i+2)π

2(n+3)

)2∏
j∈{1,2,n+1,n+2}

(
Λ− 2 cos jπ

2(n+3)

)
.

Under the assumption that Conjecture 4.7 is true, we have the following theorem.

Theorem 4.8. If Conjecture 4.7 holds, we have

det(zI − Jγ(η)) =
NCn,2(z)

DCn,2(z)

for the mutation loop γ = γ(Cn, 2).

Proof. For the matrices K̂, L̂, K and L, we have the relations

(−λ)−(n−1) det
(
K̂ − λ2I

)
= det(K), λ−2n det

(
L̂− λ2I

)
= det(L).

Therefore, by Conjecture 4.7, we have

det(zI − Jγ(η)) = det

((
zI − K̂ 0

0 zI − L̂

))
= z

3n−1
2 det(K) det(L)

=
∏
k

(
z − ζk

)
,

where ζ is a primitive 2n + 6-th root of unity and k takes a value in the sequence E =
(2, 4, 5, 6, 6, 7, 8, 8, . . . , 2n−1, 2n, 2n, 2n+1, 2n+2, 2n+4). Here λ stands for z

1
2 in Conjecture 4.7.

On the other hand, since the root system of the type Cn is given by

∆ =

{
1√
2
(±ϵi ± ϵj), 1 ≤ i < j ≤ n, ±

√
2ϵi, 1 ≤ i ≤ n

}
,

we have

NCn,2(z) =

(
z2n+6 − 1

)n
(z2 − 1)(z − 1)n−1

,

DCn,2(z) =

(
zn+3 + 1

z + 1

)
·

∏
1≤k≤2n+5

(
z − ζk

)n−2
∏

1≤k≤4

(
z − ζ±k

)
.

Therefore, we find that

NCn,2(z)

DCn,2(z)
=

(
zn+3 − 1

z − 1

)
·

∏
5≤k≤2n+1

(
z − ζk

)
Consequently, we obtain the claim under the assumption. ■

Example 4.9. Set Z as z
1
2 + z−

1
2 . In fact, Conjecture 4.7 makes it possible for us to calculate

the left-hand side of Mizuno’s conjecture more easily than with the original Jγ(η).
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1. γ(C3, 2):

det(zI − Jγ(η)) = z4 det

((
Z K1,2

K2,1 Z

))

× det





Z L1,2 L1,3 0 0 0
L2,1 Z 0 L2,4 0 0
L3,1 0 Z L3,4 0 0
0 L4,2 L4,3 Z L4,5 L4,6

0 0 L5,3 L5,4 Z L5,6

0 0 0 L6,4 L6,5 Z



 .

2. γ(C4, 2):

det(zI − Jγ(η)) = z
11
2 det

 Z K1,2 0
K2,1 Z K2,3

0 K3,2 Z



× det





Z L1,2 L1,3 0 0 0 0 0
L2,1 Z 0 L2,4 0 0 0 0
L3,1 0 Z L3,4 L3,5 0 0 0
0 L4,2 L4,3 Z 0 L4,6 0 0
0 0 L5,3 0 Z L5,6 0 0
0 0 0 L6,4 L6,5 Z L6,7 L6,8

0 0 0 0 L7,5 L7,6 Z L7,8

0 0 0 0 0 L8,6 L8,7 Z




.
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