|
SIGMA 21 (2025), 023, 45 pages arXiv:2404.10532
https://doi.org/10.3842/SIGMA.2025.023
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne
Macdonald Identities, Weyl-Kac Denominator Formulas and Affine Grassmannian Elements
Cédric Lecouvey and David Wahiche
Univ. de Tours, UMR CNRS 7013, Institut Denis Poisson, France
Received June 20, 2024, in final form March 04, 2025; Published online April 10, 2025
Abstract
The Nekrasov-Okounkov formula gives an expression for the Fourier coefficients of the Euler functions as a sum of hook length products. This formula can be deduced from a specialization in a renormalization of the affine type $A$ Weyl denominator formula and the use of a polynomial argument. In this paper, we rephrase the renormalized Weyl-Kac denominator formula as a sum parametrized by affine Grassmannian elements. This naturally gives rise to the (dual) atomic length of the root system considered introduced by Chapelier-Laget and Gerber. We then provide an interpretation of this atomic length as the cardinality of some subsets of $n$-core partitions by using foldings of affine Dynkin diagrams. This interpretation does not permit the direct use of a polynomial argument for all affine root systems. We show that this obstruction can be overcome by computing the atomic length of certain families of integer partitions. Then we show how hook-length statistics on these partitions are connected with the Coxeter length on affine Grassmannian elements and Nekrasov-Okounkov type formulas.
Key words: affine root systems; affine Grassmannians; Nekrasov-Okounkov formulas; hook length formulas; Littlewood decomposition.
pdf (768 kb)
tex (60 kb)
References
- Bourbaki N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Sci. Indust., Vol. 1337, Hermann, Paris, 1968.
- Brunat O., Chapelier-Laget N., Gerber T., Generalised core partitions and Diophantine equations, arXiv:2403.11191.
- Carlsson E., Rodriguez Villegas F., Vertex operators and character varieties, Adv. Math. 330 (2018), 38-60, arXiv:1603.09267.
- Carter R.W., Lie algebras of finite and affine type, Cambridge Stud. Adv. Math., Vol. 96, Cambridge University Press, Cambridge, 2005.
- Chapelier-Laget N., Gerber T., Atomic length on Weyl groups, J. Comb. Algebra, to appear, arXiv:2211.12359.
- Dehaye P.O., Han G.-N., A multiset hook length formula and some applications, Discrete Math. 311 (2011), 2690-2702, arXiv:1104.5435.
- Freudenthal H., de Vries H., Linear Lie groups, Pure Appl. Math., Vol. 35, Academic Press, New York, 1969.
- Garvan F., Kim D., Stanton D., Cranks and $t$-cores, Invent. Math. 101 (1990), 1-17.
- Han G.-N., Discovering hook length formulas by an expansion technique, Electron. J. Combin. 15 (2008), 133, 41 pages, arXiv:0805.2464.
- Han G.-N., The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, Ann. Inst. Fourier (Grenoble) 60 (2010), 1-29, arXiv:0805.1398.
- Han G.-N., Ji K.Q., Combining hook length formulas and BG-ranks for partitions via the Littlewood decomposition, Trans. Amer. Math. Soc. 363 (2011), 1041-1060.
- Han G.-N., Xiong H., Polynomiality of Plancherel averages of hook-content summations for strict, doubled distinct and self-conjugate partitions, J. Combin. Theory Ser. A 168 (2019), 50-83, arXiv:1601.04369.
- Iqbal A., Nazir S., Raza Z., Saleem Z., Generalizations of Nekrasov-Okounkov identity, Ann. Comb. 16 (2012), 745-753, arXiv:1011.3745.
- Johnson P., Lattice points and simultaneous core partitions, Electron. J. Combin. 25 (2018), 3.47, 19 pages, arXiv:1502.07934.
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
- King R.C., $S$-functions and characters of Lie algebras and superalgebras, in Invariant Theory and Tableaux (Minneapolis, MN, 1988), IMA Vol. Math. Appl., Vol. 19, Springer, New York, 1990, 226-261.
- Lam T., Lapointe L., Morse J., Schilling A., Shimozono M., Zabrocki M., $k$-Schur functions and affine Schubert calculus, Fields Inst. Monogr., Vol. 33, Springer, New York, 2014.
- Lam T., Lapointe L., Morse J., Shimozono M., Affine insertion and Pieri rules for the affine Grassmannian, Mem. Amer. Math. Soc. 208 (2010), xii+82 pages, arXiv:math.CO/0609110.
- Lapointe L., Morse J., Tableaux on $k+1$-cores, reduced words for affine permutations, and $k$-Schur expansions, J. Combin. Theory Ser. A 112 (2005), 44-81, arXiv:math.CO/0402320.
- Lecouvey C., Wahiche D., Expansions of Levi-type Weyl-Kac denominator formulas, in preparation.
- Lepowsky J., Milne S., Lie algebraic approaches to classical partition identities, Adv. Math. 29 (1978), 15-59.
- Macdonald I.G., Affine root systems and Dedekind's $\eta $-function, Invent. Math. 15 (1972), 91-143.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., The Clarendon Press, New York, 1995.
- Milne S.C., An elementary proof of the Macdonald identities for $A^{(1)}_l$, Adv. Math. 57 (1985), 34-70.
- Nekrasov N.A., Okounkov A., Seiberg-Witten theory and random partitions, in The Unity of Mathematics, Progr. Math., Vol. 244, Birkhäuser, Boston, MA, 2006, 525-596, arXiv:hep-th/0306238.
- Pétréolle M., Quelques développements combinatoires autour des groupes de Coxeter et des partitions d'entiers, Ph.D. Thesis, Université Claude Bernard - Lyon I, 2015, available at https://theses.hal.science/tel-01325290.
- Rains E.M., Warnaar S.O., A Nekrasov-Okounkov formula for Macdonald polynomials, J. Algebraic Combin. 48 (2018), 1-30, arXiv:1606.04613.
- Rosengren H., Schlosser M., Elliptic determinant evaluations and the Macdonald identities for affine root systems, Compos. Math. 142 (2006), 937-961, arXiv:math.CA/0505213.
- Rostam S., Core size of a random partition for the Plancherel measure, Ann. Inst. Henri Poincaré Probab. Stat. 59 (2023), 2151-2188, arXiv:2111.05970.
- Stanley R.P., Theory and application of plane partitions: Part I, Stud. Appl. Math. 50 (1971), 167-188.
- Stanley R.P., Enumerative combinatorics. Vol. 2, Cambridge Stud. Adv. Math., Vol. 62, Cambridge University Press, Cambridge, 1999.
- Stucky E.N., Thiel M., Williams N., Strange expectations in affine Weyl groups, Algebr. Comb. 7 (2024), 1551-1574, arXiv:2309.14481.
- Wahiche D., Some combinatorial interpretations of the Macdonald identities for affine root systems and Nekrasov-Okounkov type formulas, arXiv:2306.08071.
- Westbury B.W., Universal characters from the Macdonald identities, Adv. Math. 202 (2006), 50-63.
|
|