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Abstract. In this note, we prove the Riemannian analog of black hole mode stability for
Hermitian, non-self-dual gravitational instantons which are either asymptotically locally flat
(ALF) and Ricci-flat, or compact and Einstein with positive cosmological constant. We show
that the Teukolsky equation on any such manifold is a positive definite operator. We also
discuss the compatibility of the results with the existence of negative modes associated to
variational instabilities.
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1 Introduction

A gravitational instanton is a complete and orientable 4-dimensional, Ricci-flat and asymptot-
ically flat Riemannian manifold. In this note, we are interested in Hermitian asymptotically
locally flat (ALF) instantons, as well as compact Einstein–Hermitian 4-spaces. Recall that
a Riemannian manifold is Hermitian if there is an integrable almost-complex structure which
is compatible with the metric. In both the Ricci-flat and Einstein cases, the Goldberg–Sachs
theorem adapted to Riemannian signature implies that the above is equivalent to the curvature
being algebraically special, see [22, 26]. For the definition of a Riemannian manifold being ALF,
see [12, Definition 1.1]. A classification of Hermitian, toric, ALF gravitational instantons has
been given by Biquard and Gauduchon [12]. The toric assumption was recently removed in [33].
In fact an ALF Hermitian non-Kähler instanton belongs to the Euclidean Kerr, Taub-bolt, or
Chen–Teo families, or is Taub-NUT with the opposite orientation. We shall ignore the last
case, since the Taub-NUT manifold is half-flat, see Remark 1.6 below. The Euclidean Kerr
and Taub-bolt instantons are both Petrov type D, that is both the self-dual and anti-self dual
parts of the Weyl tensor are algebraically special and the manifold is non-Kähler with respect
to both orientations. The Chen–Teo instanton [19], on the other hand is Hermitian but has
algebraically general anti-self dual Weyl tensor [1]. The classification of Hermitian non-Kähler
ALF instantons complements the classification of hyperkähler instantons [15, 16, 17, 30, 34, 42],
and furthermore bears a close similarity to the classification of compact Einstein–Hermitian
non-Kähler manifolds by LeBrun [32].

Local rigidity of Hermitian ALF instantons was proved by Biquard, Gauduchon, and LeBrun,
see [13]. Given a Hermitian gravitational instanton (M, gab), there is an open neighborhood O
of gab in the space of metrics on M such that any gravitational instanton g′ab ∈ O is also
Hermitian.
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Remark 1.1. The above result leaves open the question of whether a Hermitian ALF gravita-
tional instanton is integrable in the sense of [11, Section 12.E]. The notion of mode stability for
instantons that we study in this paper is a step towards addressing this problem, see below.

Let gab be a Riemannian metric on a 4-dimensional manifold M with Ricci tensor Rab(g) and
scalar curvature S(g). We define the Einstein tensor Eab(g) by

Eab(g) = Rab(g)−
S(g)

4
gab, (1.1)

see [11, Section 12.26]. The metric gab is Einstein if Eab(g) = 0. We shall be interested in two
classes of Einstein metrics: ALF Ricci-flat manifolds, and compact Einstein manifolds with
S(g) ̸= 0. Let g(s)ab be a 1-parameter family of metrics, with

d

ds
g(s)ab|s=0 = hab, (1.2)

and let E(s)ab be the Einstein operator of g(s)ab. Assume that g(0)ab = gab is Einstein and
that hab is a linearized Einstein perturbation, that is hab satisfies the equation

d

ds
E(s)ab|s=0 = 0. (1.3)

If (M, gab) is ALF Ricci-flat, then E(s)ab in (1.3) can be replaced by R(s)ab, and we say that hab
is an ALF vacuum perturbation if for any integer k ≥ 0, ∇khab = O

(
r−1−k

)
. See Definition 2.2

below for notation. The ALF Ricci-flat instanton (M, gab) is said to be integrable if for any
ALF vacuum perturbation hab, there is a 1-parameter family g(s)ab of ALF Ricci flat metrics
such that d/ds g(s)ab|s=0 = hab. Similarly, if (M, gab) is compact Einstein, then we say that it is
integrable if for any Einstein perturbation hab, there is a 1-parameter family g(s)ab of Einstein
metrics such that d/ds g(s)ab|s=0 = hab.

The above notion of integrability (which follows [11, Section 12.E]) intends to describe the
space of solutions to the Einstein equations around the given solution gab. This space is not neces-
sarily a manifold, so the required curve of metrics may not exist. Integrability in this sense is also
known as linearization stability as defined by Fischer and Marsden [24]. For Lorentzian metrics
satisfying the Einstein equations, this concept was introduced by Choquet-Bruhat and Deser [20],
and then thoroughly studied by Fischer, Marsden, Moncrief, and Arms [9, 25, 23, 35, 36]. In par-
ticular, for vacuum spacetimes with compact Cauchy hypersurfaces, Moncrief showed [35, 36]
that linearization stability fails if the solution has Killing vector fields.

A step towards addressing integrability of Hermitian instantons is the problem of mode
stability, which is a concept that originates in the study of dynamical stability of Lorentzian
black holes, but can be adapted to Riemannian metrics. Let (M, gab) be Hermitian, with com-
plex structure Ja

b and unprimed Weyl spinor ΨABCD (see Section 2 for notation). Then Ja
b

can be represented by a spinor oA as in (2.1) and (2.2) below, with respect to which Ψ0 =
ΨABCDo

AoBoCoD = 0. This follows from (2.10) below and its integrability condition, see, for
example, the discussion around [29, equation (12.3)]. Let g(s)ab be a 1-parameter family of
metrics on M , with g(0)ab = gab. The linearized Ψ0 is given by

ϑΨ0 =
d

ds
Ψ0[g(s)ab]|s=0, (1.4)

where ϑ denotes the variation operator introduced in [10] (adapted to Riemannian signature)
which we shall use in this paper to treat perturbations, see Section 2.3. Since the background Ψ0

vanishes, ϑΨ0 is a gauge invariant quantity. If the Hermitian manifold (M, gab) is Ricci-flat or
Einstein, then for a perturbation satisfying (1.3), we have that ϑΨ0 satisfies the Teukolsky
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equation, see (2.18) below. The Teukolsky equation in the Riemannian case is the analog of the
Teukolsky equation which governs perturbations of the Kerr black hole and other Lorentzian
Petrov type D Einstein metrics. In the Lorentzian case, mode stability means that there are
no solutions of the Teukolsky equation with frequency in the upper half plane and satisfying
a condition of no incoming radiation, see [5, 45]. In the Riemannian case, we have the following
analog of the notion of mode stability.

Definition 1.2. Let (M, gab) be Hermitian. If (M, gab) is ALF Ricci-flat, then we say that mode
stability holds for (M, gab) if for any ALF vacuum perturbation we have ϑΨ0 = 0. If (M, gab)
is Einstein and compact, then we say that mode stability holds for (M, gab) if for any Einstein
perturbation we have ϑΨ0 = 0.

Remark 1.3. In Lorentzian signature, mode stability for non-vacuum spacetimes such as the
Kerr–Newman solution to the Einstein–Maxwell system, or the Kerr–de Sitter black hole in the
Einstein case, remains open. In Riemannian signature, Einstein–Maxwell instantons are also of
interest, and the problem of their mode stability is also worth studying. The instanton version
of the Kerr–de Sitter black hole is a compact Einstein space found by Page [38], whose mode
stability is proven in Theorem 1.5 below.

It was recently shown by Nilsson that mode stability holds for the Petrov type D Euclidean
Kerr and Taub-bolt families of instantons, see [37]. In this paper, we give a new proof of this
result which is valid for all Hermitian ALF instantons, that is including the Chen–Teo case. Our
argument also applies for compact Einstein–Hermitian 4-manifolds.

Theorem 1.4. Let (M, gab) be a Hermitian non-Kähler ALF instanton. Then mode stability
holds for (M, gab).

Theorem 1.5. Let (M, gab) be a compact Einstein–Hermitian 4-manifold with positive cosmo-
logical constant. Then mode stability holds for (M, gab).

Remark 1.6. Recall that a hyperkähler instanton is half-flat. Due to the Hitchin–Thorpe
inequality for closed four-manifolds M , a Ricci-flat manifold (M, gab) is half-flat if and only if
τ(M) = 2

3χ(M), see, for example, [11, Section 13.8]. Since τ(M) and χ(M) are topological
invariants, any Ricci-flat metric on a closed manifold admitting a half-flat metric will satisfy the
same equality and will thus be half-flat.

For ALF manifolds (M, gab), the Hitchin–Thorpe inequality has an additional term giving
the contribution from the ALF end, see [18, 21]. Again, equality holds if and only if (M, gab)
is hyperkähler. Since neither τ(M), χ(M) nor the contribution at infinity depends on the
particular ALF metric, any other Ricci-flat metric will again satisfy the same equality and will
thus be half-flat.

This gives the analog of mode stability for hyperkähler instantons. Therefore, we shall con-
sider mode stability only for Hermitian, non-Kähler manifolds.

Mode stability is a step towards proving the following conjecture.

Conjecture 1.7. Let (M, gab) be a Hermitian non-Kähler ALF instanton. Then (M, gab) is
integrable.

Remark 1.8. It follows from the classification of Hermitian non-Kähler ALF instantons that the
corresponding moduli spaces are smooth and 2-dimensional. Therefore, Conjecture 1.7 can be
restated in terms of infinitesimal rigidity, that is the statement that an ALF vacuum perturbation
is, modulo gauge, a perturbation with respect to the moduli parameters, see [37]. The conjecture
can be addressed by analyzing the compatibility complex along the lines in [2]. In the Lorentzian
case, the corresponding result for Kerr has been shown to hold in [4].
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2 Preliminaries and notation

In this section, (M, gab) denotes a four-dimensional orientable Riemannian manifold with Levi-
Civita connection ∇a.

2.1 Spinors and complex structures

We shall use the formalism of 2-spinors as developed by Penrose and Rindler [40, 41], with the
exception that we adapt the framework to Riemannian signature following Woodhouse [47] (see
also [27]). This can be done by first using that the constructions in [40, 41] formally apply in
a complex space as explained in [41, Section 6.9], and then noticing that one can specialize to
Riemannian signature by equipping the spin spaces with the Riemannian spinor conjugation †
defined in [47, equation (2.5)].

We shall in fact only use spinors up to scale, so the existence of a global spin structure
is not assumed. Note that the Taub-bolt and Chen–Teo instantons do not admit spin struc-
tures [19, 39].

Abstract spinor indices are denoted by A,B, . . . and A′, B′, . . . , and can be raised and lowered
with the symplectic forms ϵAB, ϵA′B′ and their inverses. Tensor indices correspond to pairs
of primed and unprimed spinor indices, a = AA′, b = BB′, etc. For example, the metric
is gab = ϵABϵA′B′ , and the Weyl tensor is

Wabcd = ΨABCDϵA′B′ϵC′D′ + Ψ̃A′B′C′D′ϵABϵCD,

where Ψ̃A′B′C′D′ and ΨABCD are the (totally symmetric) self-dual and anti-self-dual Weyl cur-
vature spinors, respectively.

We shall assume that (M, gab) has an almost-complex structure Ja
b compatible with gab. From

in [31, Chapter IV, Proposition 9.8], Ja
b can be represented by a projective spinor, say oA. The

explicit representation is

JAA′
BB′ = i(oAιB + ιAoB)δ

A′
B′ , (2.1)

see [47, equation (4.7)], where ιA is the complex conjugate of oA:

ιA = o†A. (2.2)

In (2.1), we chose the normalization oAι
A = 1. The pair

(
oA, ιA

)
is called spin dyad. The com-

ponents of ΨABCD in this dyad are

Ψ0 = ΨABCDo
AoBoCoD, Ψ1 = ΨABCDo

AoBoCιD, Ψ2 = ΨABCDo
AoBιCιD, (2.3)

together with Ψ3 = −Ψ1 and Ψ4 = Ψ0. Note that Ψ2 is real.

2.2 Conformally invariant GHP connections

An almost-complex structure is invariant under two kinds of transformations: a rescaling of the
spinors in (2.1) of the form

oA → λoA, ιA → λ−1ιA, (2.4)

where λ : M → U(1), and conformal transformations

gab → ĝab = Ω2gab, (2.5)

where Ω is a positive function.
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We shall use a framework that is covariant under both of the above transformations. This
is closely related to the conformally invariant Geroch–Held–Penrose (GHP) formalism given
in [40, Section 5.6], but with three main differences arising from the following requirements: it
should apply to arbitrary spinor/tensor fields (the framework in [40, Section 5.6] applies only to
scalar fields), it should be independent of a choice of primed spin dyad, it should be adapted to
Riemann signature. A framework satisfying these requirements can be found in [8].

Under conformal transformations (2.5), the spin dyad in (2.1) transforms as

ôA = Ω−1/2oA, ι̂A = Ω−1/2ιA. (2.6)

A metric-dependent tensor/spinor field φA which transforms with respect to (2.4) and (2.5)
according to

φA → λpΩwφA (2.7)

is said to have conformal weight w and GHP weight p. Here, A represents an arbitrary collection
of tensor/spinor indices. We shall refer to fields satisfying (2.7) as properly weighted fields
with weights (w, p). For example, oA and ιA have weights

(
−1

2 , 1
)
and

(
−1

2 ,−1
)
, respectively,

while oA and ιA have weights
(
1
2 , 1

)
and

(
1
2 ,−1

)
. The components Ψ0, Ψ1, Ψ2 of the Weyl spinor

(equation (2.3)) have conformal weight w = −2 and GHP weights 4, 2, 0, respectively.
Let χ be a scalar field, φA a spinor field, and va a covector field, all of them with conformal

weight w and GHP weight p. We define the covariant derivative Ca by

Caχ = ∇aχ+ wfaχ+ pPaχ,

CAA′φB = ∇AA′φB − fA′BφA + wfAA′φB + pPAA′φB,

Cavb = ∇avb + wfavb + pPavb −Qab
cvc,

where

fa = −1

2
Jc

b∇cJ
b
a, (2.8)

Pa = ωa −
1

2
iJb

afb, (2.9)

Qab
c = faδ

c
b + fbδ

c
a − f cgab.

Here ωa = ιB∇ao
B is the GHP connection 1-form, and fa is the Lee form. The action of Ca on

fields with an arbitrary index structure is defined in the standard way.

Remark 2.1. We have the following facts, which generalize similar results for the standard
GHP formalism and its corresponding covariant derivative Θa.

1. If χ has weights (w, p), then χ̄ has weights (w,−p). This follows from (2.2), (2.4) and (2.6).
This is different from Lorentzian GHP, since in that case there is also a “q-weight” asso-
ciated to a primed spin dyad, and complex conjugation interchanges p and q.

2. Ca is real (it commutes with complex conjugation) and metric (Cagbc = 0). Reality can be
seen by making use of the previous item together with the fact that the 1-form Pa in (2.9)
is purely imaginary, P̄a = −Pa.

3. Ca is covariant under GHP and conformal transformations [8, Section 2.3]: if (2.7) holds,
then

CaφA → λpΩwCaφA.

This generalizes the transformation rule of the standard GHP derivative, that is Θaφ
A →

λpΘaφ
A under GHP scalings (2.4).
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4. (M, gab) is Hermitian if and only if CaoB = 0. This follows since

CAA′oB = σA′ιAι
B, σA′ = oAoB∇AA′oB,

and, using GHP notation [40],

oAoB∇AA′oB = 0 ⇔ κ = σ = 0, (2.10)

which is the condition for the existence of a shear-free null geodesic congruence [41, equa-
tion (7.3.1)], or, equivalently, an integrable complex structure [8, Section 2.4]. This gener-
alizes the characterization of Kähler manifolds in terms of the GHP connection: a Rieman-
nian 4-manifold is Kähler if and only if Θao

B = 0, see [31, Chapter IV, Proposition 9.8].

5. (M, gab) is conformally Kähler iff it is Hermitian and fa = ∇a log ϕ for some scalar field ϕ
(with w = −1, p = 0). This field satisfies

Caϕ = 0.

For example, in the Einstein–Hermitian case we have that [8, Remark 5.1]

ϕ ∝ Ψ
1/3
2 . (2.11)

6. If (M, gab) is conformally Kähler, and ua has weights w, p = 0, then

Caua = ϕ−(w+2)∇a

(
ϕw+2ua

)
. (2.12)

2.3 Perturbations and the Teukolsky equation

Here we introduce some notation for gravitational perturbations and prove an identity that will
be needed in Section 3.

The gravitational perturbations we consider are of two types: either compactly supported in
the compact Einstein case, or they satisfy certain fall-off conditions in the ALF Ricci-flat case.
For the latter, we use the following notation, which is taken from [3].

Definition 2.2 ([3, Definition 2.6]). Let (M, gab) be an ALF manifold as defined in [3, Defini-
tion 2.1]. Let t and s be any two tensor fields on (M, gab). We write

t = O(rα), s = O∗(rα)

if there is a constant C such that |t| ≤ Crα for r ≥ A, and
∣∣∇ks

∣∣ = O
(
rα−k

)
for all non-negative

integers k. Here, |t|2 = ta...dt
a...d.

We treat variations of spinor and tensor fields following the approach introduced in [10],
which can be adapted to Riemannian signature. In particular, given a symmetric 2-tensor hab
on (M, gab), viewed as a linear perturbation of the metric, the corresponding perturbations of
spinor and tensor fields are given by the variation operator ϑ. For example, the variation of
the unprimed Weyl spinor is ϑΨABCD, and the variations of the scalars Ψi, i = 0, 1, 2 are given
by ϑΨi. The formula for ϑΨABCD is

ϑΨABCD =
1

2
∇A′

(A∇
B′
B hCD)A′B′ +

1

4
gefhefΨABCD, (2.13)

which coincides with [40, equation (5.7.15)].
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Let hab be an arbitrary metric perturbation. Recall that we defined the Einstein operator
in (1.1). We denote its linearization by ϑEab, and the linearized Ricci tensor and scalar curvature
by ϑRab and ϑS. From [11, Theorem 1.174], we have

ϑEab = ϑRab −
1

4
ϑSgab −

1

4
S(g)hab

=
1

2
∆hab −

1

2
∇a∇b

(
gcdhcd

)
+

1

2
∇c∇ahbc +

1

2
∇c∇bhac

− 1

4
gab

[
∇c∇dhcd +∆

(
gcdhcd

)
− hcdRcd

]
− 1

4
S(g)hab, (2.14)

where ∆ = −gab∇a∇b. Define the operator

L = gabCaCb − 18Ψ2 (2.15)

acting on scalar fields of weight (w, p). We have the following lemma.

Lemma 2.3. Let (M, gab) be Einstein–Hermitian, with (possibly vanishing) cosmological con-
stant λ. Let hab be an arbitrary metric perturbation (1.2), ϑEab the linearized Einstein opera-
tor (2.14), and ϑΨ0 the linearized Weyl scalar (1.4). Furthermore, let fa be the Lee form (2.8),
and Qabcd the tensor field

Qabcd = oAoBoCoDϵA
′B′

ϵC
′D′

. (2.16)

Then

−Ω̊−1Qacbd(∇a − 4fa)∇dϑEbc = L
[
Ω̊−1ϑΨ0

]
, (2.17)

where L is the operator (2.15) and Ω̊ is an auxiliary constant conformal factor, that is a scalar
field with weights w = 1, p = 0 and ∇aΩ̊ = 0.

Corollary 2.4. Let hab be a linearized Einstein perturbation ϑEab = 0, and let χ = Ω̊−1ϑΨ0.
Then χ solves the Teukolsky equation

L[χ] = 0. (2.18)

Remark 2.5.

1. The auxiliary constant conformal factor Ω̊ is necessary for conformal invariance
(
note

that ∇aΩ̊ = 0 but CaΩ̊ ̸= 0
)
, see the proof below. Once the operator Ca is written in terms

of the ordinary Levi-Civita connection (see (2.19) below), one can set Ω̊ = 1.

2. If (M, gab) is Hermitian, and χ has w(χ) = −3 and p(χ) = 4, then in Newman–Penrose
notation, we have

L[χ] = 2
[
(D + ε̃− 3ε− 4ρ− ρ̃)

(
D′ + 4ε′ − ρ′

)
−
(
δ + β̃′ − 3β − 4τ − τ ′

)(
δ′ + 2β′ − τ ′

)
− 3Ψ2

]
χ, (2.19)

so we see that L coincides with the Teukolsky operator [43, equation (2.12)].

Proof of Lemma 2.3. The strategy is to consider identities for an arbitrary Riemannian man-
ifold (M, gab), and then to linearize around an Einstein–Hermitian metric. Consider then an
arbitrary (M, gab), with Levi-Civita connection∇a and unprimed Weyl curvature spinor ΨABCD.
Let Ja

b be a (locally defined) compatible almost-complex structure, and let oA be the associated
spinor field as in Section 2.1. We can then define conformally and GHP weighted fields as in
Section 2.2, together with the connection Ca on the corresponding bundles.
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Let Ω̊ be an arbitrary constant conformal factor, that is a scalar field with weights w = 1,
p = 0 and ∇aΩ̊ = 0, and define

φABCD := Ω̊−1ΨABCD. (2.20)

This object has weights w = −1, p = 0, and it is essentially the “gravitational spin 2 field” of
Penrose and Rindler [41, equation (9.6.40)]. We have

CAA′CA′EφBCDE = (∇AA′ − 4fAA′)∇A′EφBCDE

= Ω̊−1(∇AA′ − 4fAA′)∇A′EΨBCDE

= Ω̊−1(∇AA′ − 4fAA′)∇B′

(BΦCD)B′
A′
,

where in the second line we used the definition (2.20) and the fact that Ω̊ is constant, and in the
third line we used the spinor form of the Bianchi identities [40, equation (4.10.7)] adapted to
Riemann signature (recall Section 2.1). Here ΦABA′B′ is the trace-free Ricci spinor. Contracting
with oAoBoCoD:

oAoBoCoDCAA′CA′EφBCDE = Ω̊−1oAoBoCoD(∇AA′ − 4fAA′)∇B′
B ΦCDB′A

′

= Ω̊−1oAoCoBoDϵA
′C′

ϵB
′D′

(∇AA′ − 4fAA′)∇DD′ΦBCB′C′

= −1

2
Ω̊−1Qacbd(∇a − 4fa)∇dEbc, (2.21)

where in the last line we used the definition (2.16) and the identity Φbc = −1
2Ebc (see [40, equa-

tion (4.6.25)] and recall (1.1)).
It remains to find a convenient expression for the first line in (2.21). This can be done using

[7, equations (3.6) and (3.15)]. We have

oAoBoCoDCAA′CA′EφBCDE =
1

2

(
gabCaCb − 18Ψ2

)
φ0 +B, (2.22)

where φ0 = oAoBoCoDφABCD = Ω̊−1Ψ0 and B is a term which couples the GHP quantities κ, σ,
Ψ0, Ψ1 quadratically. Equating the last line of (2.21) to the right-hand side of (2.22), and taking
a linearization around a metric which satisfies Eab|s=0 = 0, Ψ0|s=0 = Ψ1|s=0 = κ|s=0 = σ|s=0 = 0,
that is, an Einstein–Hermitian metric, see (2.10), the result (2.17) follows. ■

Lemma 2.6. Let (M, gab) be Einstein–Hermitian, with volume form dµ. Let V be a four-dimen-
sional region in M with boundary ∂V , whose unit normal and induced volume form are na, dΣ,
respectively. For any scalar field χ with conformal weight w = −3 and GHP weight p = 4
satisfying (2.18), we have

0 =

∫
∂V

Ψ
−4/3
2 χ̄(naCaχ) dΣ−

∫
V
Ψ

−4/3
2

(
|Cχ|2 + 18Ψ2|χ|2

)
dµ. (2.23)

Proof. We have that (M, gab) is Einstein and conformally Kähler, see [22], so identities (2.11)
and (2.12) hold. Let χ be a solution to (2.18), with w = −3, p = 4. First notice that the
covector field χ̄Caχ has weights w = −6, p = 0, so using (2.11) and (2.12), we have

Ca(χ̄Caχ) = Ψ
4/3
2 ∇a

[
Ψ

−4/3
2 χ̄Caχ

]
. (2.24)

Now we multiply (2.18) by Ψ
−4/3
2 χ̄ and use the Leibniz property of Ca together with (2.24),

0 = Ψ
−4/3
2 χ̄L[χ] = Ψ

−4/3
2 χ̄gabCaCbχ− 18Ψ

−1/3
2 |χ|2

= Ψ
−4/3
2 gabCa(χ̄Cbχ)−Ψ

−4/3
2 gab(Caχ̄)(Cbχ)− 18Ψ

−1/3
2 |χ|2

= ∇a

(
Ψ

−4/3
2 χ̄Caχ

)
−Ψ

−4/3
2

(
|Cχ|2 + 18Ψ2|χ|2

)
.

Integrating this equation over a four-dimensional region V and using the divergence theorem,
we get (2.23). ■
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3 Mode stability

3.1 ALF instantons

The proof of the following lemma is similar to the proof of [13, Theorem A].

Lemma 3.1. Let (M, gab) be a Hermitian non-Kähler ALF instanton. Then Ψ2 > 0 in M .

Remark 3.2.

1. In view of the classification of Hermitian non-Kähler ALF instantons [33], one could prove
Lemma 3.1 by an explicit calculation for the relevant families of instantons. For the
Chen–Teo case, the calculation needed is lengthy but can be done along the lines in [1].

2. For a conformally Kähler manifold (M, gab), where the Kähler metric and its scalar cur-
vature are ĝab = φ2gab and Ŝ, it holds

Ψ2 = φ2 Ŝ

12
, (3.1)

see [6]. Thus signΨ2 = sign Ŝ, so it is sufficient to show that Ŝ > 0.

Proof. Let W+ be the self-dual part of the Weyl tensor. By [22, Proposition 5, p. 420], we
have that W+ does not have zeros in M , so Ψ2 does not have zeros either. Hence, by (3.1),
Ŝ does not change sign. With the conformal factor

φ = 241/6
∣∣W+

∣∣1/3
g

(3.2)

the metric ĝab = φ2gab is extremal Kähler with scalar curvature Ŝ satisfying

Ŝφ3 = 6∆φ,

where ∆ = −gab∇a∇b. By construction, φ > 0. Recalling Definition 2.2, we have
∣∣W+

∣∣ =
O
(
r−3

)
so φ → 0 at ∞. Hence φ must have a local maximum at some x ∈ M , and ∆φ|x ≥ 0.

This implies Ŝφ3
∣∣
x
> 0, which since φ > 0 implies Ŝ(x) > 0. By point (2) of Remark 3.2, we

find that Ψ2 > 0. ■

We are now ready to prove our main theorem.

Proof of Theorem 1.4. Consider an ALF vacuum perturbation hab, that is, hab satisfies (1.3)
and ∇khab = O

(
r−1−k

)
for any integer k ≥ 0. We recall that the symbols O, O∗ used here and

below were introduced in Definition 2.2. Let χ = ϑΨ0 be the linearized extreme Weyl scalar.
Since this involves two derivatives of hab (see (2.13)), the ALF assumption for the perturbation
implies χ = O∗(r−3

)
. In particular, we have Caχ = O

(
r−4

)
. In addition, the ALF condi-

tion for the background instanton implies Ψ2 = O
(
r−3

)
, so Ψ

−4/3
2 = O

(
r4
)
. Therefore, letting

V = {r < R}, from the above we deduce that on ∂V we have

Ψ
−4/3
2 χ̄(Caχ) = O

(
r−3

)
while A(∂V ) = O

(
r2
)
. This shows that the boundary term in (2.23) is O

(
r−1

)
and hence letting

r → ∞, we have

0 =

∫
M

Ψ
−4/3
2

(
|Cχ|2 + 18Ψ2|χ|2

)
dµ.

Since by Lemma 3.1 Ψ2 > 0, we get χ = 0 and the result follows. ■
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3.2 The compact case

In this section, we extend our mode stability result (Theorem 1.4) to the compact case. The only
known Ricci-flat compact 4-manifolds are the flat 4-torus and K3 surfaces (which are half-flat),
so we need to include a cosmological constant λ ̸= 0 (see Remark 1.6).

A classification of compact Einstein–Hermitian (non-Kähler) 4-manifolds with λ > 0 is known
from LeBrun [32], the only possibilities are the Fubini–Study metric on CP2 (with orientation
opposite to the Kähler one), the Page metric on CP2#CP2

, or the Chen–LeBrun–Weber metric
on CP2#2CP2

. We note that the Page metric corresponds to a special limit of the Riemannian
Kerr–de Sitter solution [38].

Proof of Theorem 1.5. Let (M, gab) be a compact Einstein–Hermitian 4-manifold with λ > 0,
and consider a metric perturbation hab. Note that Lemmas 2.3 and 2.6 apply also to the
compact case. By item (2) in Remark 2.5, if hab solves ϑEab = 0, then we have a solution χ to
equation (2.18), so identity (2.23) applies. From the above list of compact Einstein–Hermitian
instantons, we see that all of them are closed, so the boundary term in (2.23) vanishes:

0 =

∫
M

Ψ
−4/3
2

(
|Cχ|2 + 18Ψ2|χ|2

)
dµ.

The sign of Ψ2 can be determined by an analog of Lemma 3.1: from item (2) in Remark 3.2, we
need only focus on the sign of the scalar curvature Ŝ of the conformally related Kähler metric
ĝab = φ2gab, where φ is still given by (3.2). Using [44, equation (D.9)] with Ω = φ, the conformal
behaviour of scalar curvature is

φ2Ŝ = S + 6φ−1∆φ.

Since S = 4λ > 0, and since the proof of Lemma 3.1 applies to show that φ−1∆φ > 0, we
have Ŝ > 0, and thus Ψ2 > 0. So χ = 0, and the result follows. ■

3.3 Negative modes

Here we comment on the compatibility of our mode stability results with other notions of stability
in the literature, both in the ALF and compact cases.

A frequently used definition of Riemannian linear stability for Einstein metrics, see, for
example, [11, Definition 4.63], is in terms of a variational problem: given the Einstein–Hilbert
functional S, an Einstein metric gab is said to be stable if the second variation of S at gab is
negative for all compactly supported, trace-free metric perturbations. If, on the other hand, one
can find a perturbation such that the second variation of S is positive, then gab is said to be
unstable.

The above definition is often formulated as an eigenvalue problem: if hab satisfies the TT
conditions ∇ahab = 0 and gabhab = 0, one considers the problem L(h)ab = µhab, where L(h)ab =
−gcd∇c∇dhab − 2Ra

c
b
dhcd, and the solution is unstable if there is a negative mode µ < 0. See,

for example, [28, Section V], where a negative mode is found for the Schwarzschild instanton,
and used to argue about the semi-classical instability of the solution; see also Witten’s work [46].

It was recently shown in [14] that if (M, gab) is a conformally Kähler 4-manifold which is
either compact and Einstein, or ALF and Ricci-flat, then it is unstable in the above variational
sense. Here we point out the following.

Proposition 3.3. The unstable metric perturbations found in [14] are conformally half-flat: the
unprimed linearized Weyl curvature spinor identically vanishes.
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Remark 3.4. The above result means that ϑΨABCD = 0, thus in particular ϑΨ0 = 0, so
we see that the variational instability is still compatible with mode stability in the sense of
Definition 1.2.

Proof. In both the compact and ALF cases, the unstable metric perturbations in [14] are given
by the composition of a closed anti-self-dual 2-form ω− and the conformal Killing–Yano tensor τ
associated to the conformal Kähler structure; see [14]. In spinor notation, this can be expressed
as follows: ω−

ab = ϕA′B′ϵAB, τab = KABϵA′B′ , and the unstable perturbation is

hab = (ω− ◦ τ)ab = ϕA′B′KAB, (3.3)

where ϕA′B′ and KAB satisfy the Maxwell and Killing spinor equations, respectively,

∇AA′
ϕA′B′ = 0, ∇A′(AKBC) = 0. (3.4)

In the compact case, ω−
ab can be any closed anti-self-dual 2-form, that is any Maxwell field ϕA′B′ .

In the ALF case, ϕA′B′ = ∇A(A′XA
B′), where Xa is the Killing field associated to the Killing

spinor KAB [14].
We can compute the linearized Weyl spinor using formula (2.13). Since the trace of (3.3)

vanishes, we have

ϑΨABCD =
1

2
∇A′

(A∇
B′
B

[
KCD)ϕA′B′

]
= 0

where the second equality follows from (3.4). ■
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