|
SIGMA 21 (2025), 010, 21 pages arXiv:2312.15522
https://doi.org/10.3842/SIGMA.2025.010
Fermionic Basis in Conformal Field Theory and Thermodynamic Bethe Ansatz for Excited States II
Sergei Adler and Hermann Boos
Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal, Germany
Received July 03, 2024, in final form February 07, 2025; Published online February 16, 2025
Abstract
We consider the XXZ spin chain in the scaling limit in the Matsubara direction. The main result of this paper is new representations for the functions $\Psi(l, \kappa)$ and $\Theta(l, m; \kappa, \alpha)$ associated with the function $\omega(\zeta, \xi; \kappa, \kappa)$ found in the expression for the correlation function of the generators of the fermionic basis for the XXZ spin chain. The final result incorporates the case of particle-hole excitations which is needed for the relation of the fermionic basis to the Virasoro basis of the CFT descendants.
Key words: integrable models; six-vertex model; XXZ spin chain; thermodynamic Bethe ansatz; fermionic basis; excited states; conformal field theory; Virasoro algebra.
pdf (477 kb)
tex (24 kb)
References
- Baxter R.J., Exactly solved models in statistical mechanics, Academic Press, London, 1982.
- Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B., Integrable structure of conformal field theory. II. ${\rm Q}$-operator and DDV equation, Comm. Math. Phys. 190 (1997), 247-278, arXiv:hep-th/9604044.
- Boos H., Fermionic basis in conformal field theory and thermodynamic Bethe ansatz for excited states, SIGMA 7 (2011), 007, 36 pages, arXiv:1010.0858.
- Boos H., Göhmann F., On the physical part of the factorized correlation functions of the $XXZ$ chain, J. Phys. A 42 (2009), 315001, 27 pages, arXiv:0903.5043.
- Boos H., Jimbo M., Miwa T., Smirnov F., Completeness of a fermionic basis in the homogeneous $XXZ$ model, J. Math. Phys. 50 (2009), 095206, 10 pages, arXiv:0903.0115.
- Boos H., Jimbo M., Miwa T., Smirnov F., Hidden Grassmann structure in the $XXZ$ model IV: CFT limit, Comm. Math. Phys. 299 (2010), 825-866, arXiv:0911.3731.
- Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y., Hidden Grassmann structure in the $XXZ$ model, Comm. Math. Phys. 272 (2007), 263-281, arXiv:hep-th/0606280.
- Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y., Hidden Grassmann structure in the $XXZ$ model. II. Creation operators, Comm. Math. Phys. 286 (2009), 875-932, arXiv:0801.1176.
- Boos H., Smirnov F., New results on integrable structure of conformal field theory, J. Phys. A 51 (2018), 374003, 30 pages, arXiv:1610.09537.
- Destri C., de Vega H.J., Unified approach to thermodynamic Bethe ansatz and finite size corrections for lattice models and field theories, Nuclear Phys. B 438 (1995), 413-454, arXiv:hep-th/9407117.
- Fateev V., Fradkin D., Lukyanov S., Zamolodchikov A., Zamolodchikov A., Expectation values of descendent fields in the sine-Gordon model, Nuclear Phys. B 540 (1999), 587-609, arXiv:hep-th/9807236.
- Jimbo M., Miwa T., Smirnov F., Hidden Grassmann structure in the XXZ model III: introducing the Matsubara direction, J. Phys. A 42 (2009), 304018, 31 pages, arXiv:0811.0439.
- Klümper A., Free energy and correlation lengths of quantum chains related to restricted solid-on-solid lattice models, Ann. Physik 1 (1992), 540-553.
- Kotousov G.A., Lukyanov S.L., On the scaling behaviour of an integrable spin chain with $\mathcal{Z}_r$ symmetry, Nuclear Phys. B 993 (2023), 116269, 32 pages, arXiv:2305.03620.
- Negro S., Smirnov F., Reflection relations and fermionic basis, Lett. Math. Phys. 103 (2013), 1293-1311, arXiv:1304.1860.
- Smirnov F., Form factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys., Vol. 14, World Scientific Publishing, River Edge, NJ, 1992.
- Smirnov F., Private communications.
|
|