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Abstract. We provide a geometric transformation on null curves in the anti-de Sitter
3-space (AdS) which induces the Bäcklund transformation for the KdV equation. In addi-
tion, we show that this geometric transformation satisfies a suitable permutability theorem.
We also illustrate how to implement it when the original null curve has constant bending.
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1 Introduction

In a previous paper [8], we showed that, in the context of Lorentzian geometry on the anti-
de Sitter 3-space (AdS, for short) there are flows (referred to as LIEN flows) on null curves
that induce bending evolution by any partial differential equation (PDE) in the KdV hierarchy.
In particular, the first order LIEN flow induces evolution by the Korteweg–de Vries (KdV)
equation in the form

∂tκ+ ∂3
sκ− 6κ∂sκ = 0.

Although similar flows exist on other Lorentzian space forms (see, for instance, [4, 6]), the
specific case of AdS is special in the sense that the theory of null curves in AdS is closely related
to the theory of star-shaped curves in the centro-affine plane. Indeed, null curves in AdS can be
analyzed by combining together pairs of star-shaped curves in the centro-affine plane [8].

The KdV equation is a classical PDE that originated as a model to understand the propaga-
tion of waves on shallow water surfaces [5] and is a prototype of completely integrable evolution
equations. As a completely integrable PDE the KdV equation has a rich structure including, not
only infinitely many conservation laws, but also a Bäcklund transformation [11] which generates
new solutions from old. In this paper, we use Tabachnikov’s transformation on star-shaped
curves [10] and a similar transformation of Terng–Wu [12] to define a geometric transforma-
tion (referred to as the T -transform) on null curves in AdS that corresponds to the Bäcklund
transformation for their bendings.

We begin, in Section 2, by recalling the basic properties of null curves γ : J ⊆ R −→ AdS with-
out inflection points in the SL(2,R) model for AdS. Such curves possess canonical parameteriza-
tions and a third order differential invariant κ, the bending (often known as curvature or torsion).
In addition, they also have a spinor frame field (F+, F−) : J ⊆ R −→ SL(2,R)×SL(2,R) defined
along them. The components F± of the spinor frame field along γ are, precisely, the canonical
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central affine frame fields of two star-shaped curves η± in the centro-affine plane Ṙ2 = R2\{(0, 0)}
with central affine curvatures k± = κ± 1, respectively [8].

In Section 3, we introduce the T -transform on null curves in AdS. We show, in Theorem 3.8,
how to build such a transformation using a solution of the Riccati equation

f ′ + f2 = κ+ cosh(2ξ),

involving the bending κ of the null curve and a real parameter ξ ̸= 0. We also prove that the
T -transform satisfies a suitable permutability theorem (Theorem 3.10).

Next, in Section 4, after briefly recalling some basic facts about the Bäcklund transformation
for the KdV equation [11, 13], we use the T -transform to find, in Theorem 4.4, a geometric
realization of it. In addition, such a transformation satisfies a permutability theorem as well.
This geometric realization consists on applying the T -transform to a solution of the LIEN flow [8].

Finally, in Section 5, we illustrate how to implement the T -transform when the original null
curve has constant bending. A detailed analysis of null curves in AdS with constant bending
has been carried out in [8].

The results of this paper naturally suggest further directions for research. In particular, it is
likely that these results (as well as those of [8]) can be reformulated in the context of holomorphic
null curves in PSL(2,C). Since the seminal work of R. Bryant [2], it is known that the geometry
of holomorphic null curves [3, 7] in PSL(2,C) is related via the Bryant’s correspondence to
the geometry of immersed surfaces with constant mean curvature one (CMC 1, for short) in the
hyperbolic spaceH3. In this case, it is expected that the T -transform corresponds to the Darboux
transform for CMC 1 surfaces in H3. It is also reasonable to ask if the stationary solutions of
the holomorphic LIEN flow or its finite-gap solutions can be used to find new embedded CMC 1
surfaces with a finite number of ends, in the spirit of [1].

2 Preliminaries

In this section, we will collect the basic information about the SL(2,R) model for the anti-
de Sitter 3-space (AdS) and about the geometric features of null curves in AdS. For a more
detailed analysis, we refer the reader to [8, Sections 2 and 3].

2.1 The anti-de Sitter 3-space

Consider the vector space of 2 × 2 real matrices R2,2 equipped with the quadratic form q of
signature (−,−,+,+) defined by

q(X) = −det(X) = x21x
1
2 − x11x

2
2,

for each X =
(
xji
)
∈ R2,2. The corresponding inner product will be denoted by ⟨·, ·⟩ and we

will consider the orientation of R2,2 determined by the volume form Ω = dx11 ∧ dx22 ∧ dx21 ∧ dx12.
On Λ2

(
R2,2

)
we define an inner product ⟨⟨·, ·⟩⟩ by

⟨⟨U ∧ V,W ∧ Z⟩⟩ = det

(
⟨U,W ⟩ ⟨U,Z⟩
⟨V,W ⟩ ⟨V,Z⟩

)
.

A bivector U ∧ V ∈ Λ2
(
R2,2

)
is of type (−,−) if the restriction of the above inner product to

span{U ∧ V } is negative definite, and of type (−, 0) if this restriction is nonzero semi-negative
definite and degenerate. We fix the bivector of type (−,−)

U ∧ V =

(
1 0
0 1

)
∧
(

0 1
−1 0

)
∈ Λ2

(
R2,2

)
,
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and we say that a bivector W ∧ Z of type (−, 0) is positive if ⟨⟨U ∧ V,W ∧ Z⟩⟩ > 0. The set
of all positive bivectors of type (−, 0) is denoted by N+. This choice defines the notion of time
orientation in R2,2.

Let SL(2,R) be the special linear group of degree 2 over R (i.e., the group consisting of
the 2× 2 real matrices of determinant 1 with the ordinary matrix multiplication). The restriction
of the inner product ⟨·, ·⟩ of R2,2 to the special linear group SL(2,R) gives a Lorentzian metric of
constant sectional curvature −1. The special linear group SL(2,R) endowed with the Lorentzian
metric induced by ⟨·, ·⟩ is a model for the anti-de Sitter 3-space (AdS).

Remark 2.1. Throughout this paper, it will be implicitly assumed that the model for AdS is
the special linear group SL(2,R). For visualization purposes, we will identify AdS with the open
solid torus in R3 swept out by the rotation of the (open) unit disc of the Oxz-plane centered at
(2, 0, 0) around the Oz-axis.

Consider the normal vector field Q : X ∈ AdS 7−→ −2X ∈ R2,2 and the orientation in AdS
determined by the volume form iQΩ. Given a null tangent vector T ∈ TXAdS, the bivectorX ∧ T
is of type (−, 0). We define a time-orientation on AdS by declaring T to be future-directed
if X ∧ T ∈ N+.

2.2 Geometry of null curves

Let J ⊆ R be an open interval. A smooth immersed curve γ : J ⊆ R −→ AdS is null if its velocity
vector γ′(s) is a null (or, light-like) vector for each s ∈ J . In other words, if ⟨γ′(s), γ′(s)⟩ = 0 for
all s ∈ J . A null curve is future-directed if the bivector γ ∧ γ′ of type (−, 0) is positive, that is,
if γ ∧ γ′ ∈ N+.

Let γ : J ⊆ R −→ AdS be a future-directed null curve without inflection points (i.e., such
that γ′ ∧ γ′′ ̸= 0 holds). Since γ′ ∧ γ′′ ̸= 0, then γ′′ is a space-like vector. Using the terminology
of [8], we say that γ is parameterized by the proper time if ⟨γ′′(s), γ′′(s)⟩ = 4 for every s ∈ J .
The bending of a curve γ parameterized by the proper time is defined by

κ(s) = − 1

16

〈
γ′′′(s), γ′′′(s)

〉
.

Remark 2.2. From now on, we assume that all our curves γ : J ⊆ R −→ AdS are null, future-
directed, parameterized by their proper time s ∈ J , and have no inflection points. In this setting,
the bending κ(s) completely determines the null curve γ, up to congruence.

Let γ : J ⊆ R −→ AdS be a null curve with bending κ. The spinor frame field along γ is
a lift (F+, F−) : J ⊆ R −→ SL(2,R)× SL(2,R) such that

dF+ = F+

(
0 κ+ 1
1 0

)
ds, (2.1)

dF− = F−

(
0 κ− 1
1 0

)
ds. (2.2)

The spinor frame field is defined up to a sign. The equations (2.1) and (2.2) are the spinorial
counterpart of the classical Frenet-type equations and, hence, we will refer to them as the spino-
rial Frenet-type equations of γ. Observe that the null curve γ can be recovered from the spinor
frame field (F+, F−) as γ = F+F

−1
− .

Remark 2.3. The frame (F+, F−) can be explicitly obtained as a lifting to SL(2,R)× SL(2,R)
of a moving frame adapted to the curve γ, with values in the automorphism group of AdS. For
the details of the construction, we refer to [8].
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In [8], employing the spinor frame field (F+, F−) along γ, we related null curves in AdS to
a suitable pair of star-shaped curves in the centro-affine plane Ṙ2 = R2 \ {(0, 0)}. For later use,
we state this result here.

Theorem 2.4 ([8, Theorem 3.3]). Let γ : J ⊆ R −→ AdS be a null curve with bending κ and
spinor frame field (F+, F−) along it (which can be obtained by solving the spinorial Frenet-type
equations (2.1) and (2.2)). Then, the first column vectors of F± form a pair of star-shaped
curves (η+, η−) in Ṙ2 with central affine curvatures1 k+ = κ+ 1, k− = κ− 1, respectively.

Conversely, let (η+, η−) be a pair of star-shaped curves with central affine curvatures k+
and k− related by (k+ − k−)/2 = 1, and canonical central affine frame fields F+ =

(
η+, η

′
+

)
and F− =

(
η−, η

′
−
)
, respectively. Then, γ = F+F

−1
− , is a null curve in AdS with bending κ =

(k+ + k−)/2 and spinor frame field (F+, F−) along it.

Remark 2.5. Following the terminology introduced in [8], the pair of star-shaped curves
(η+, η−) will be referred to as the pair of cousins associated with the null curve γ.

We briefly recall here the case of closed null curves with constant bending (for more details,
see [8, Example 3.5]).

Example 2.6. Consider a closed null curve γ : J = R −→ AdS with constant bending κ. Since γ
is closed, this implies that the spinor frame field (F+, F−) along γ is periodic and that the least
periods of F+ and F− are commensurable. That is, the bending of γ must be

κ ≡ κm,n = −m2 + n2

m2 − n2
,

where m > n are two relatively prime natural numbers. Furthermore,

1. If m+ n is even, the curve γ represents a torus knot of type ((m− n)/2, (n+m)/2).

2. If m+ n is odd, the curve γ represents a torus knot of type (m− n, n+m).

In Figure 1 we illustrate a closed null curve with constant bending as well as its associated
pair of star-shaped cousins (other illustrations of closed null curves of this family can be found
in [8, Figures 2 and 3]).
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Figure 1. Left: The closed null curve γ with constant bending κ7,3 (see Example 2.6). This curve

represents a torus knot of type (2, 5). Right: The associated pair of star-shaped cousins (η+, η−) in blue

and red, respectively.

1Our notion of central affine curvature coincides with that of Terng–Wu [12] and it has the opposite sign of
that of Pinkall [9].
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Figure 2. The star-shaped curve η+ of Figure 1, in blue and dotted in yellow, and the T -transform η̃+
of η+ in plain blue. The green triangles, which have the same area, are the ones with vertices O (in black),

η+(s) (in yellow) and η̃+(s) (in blue). For each figure the triangle is shown at different values of the

parameter s ∈ J .
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Figure 3. The star-shaped curve η− of Figure 1, in red and dotted in yellow, and the T -transform η̃−
of η− in plain red. The green triangles, which have the same area, are the ones with vertices O (in black),

η−(s) (in yellow) and η̃−(s) (in red). For each figure the triangle is shown at different values of the

parameter s ∈ J .

3 The T -transform

In this section, we will introduce a geometric transformation on null curves in AdS, which we
call the T -transform, and show how to build it using a solution of the Riccati equation.

In order to define the T -transform on null curves, we will employ Tabachnikov’s transforma-
tion2 on star-shaped curves [10] and translate it to null curves through the associated pair of
cousins.

Definition 3.1. Two star-shaped curves η, η̃ : J ⊆ R −→ Ṙ2 parameterized by the central affine
arc length are said to be T -transforms of each other3 if det(η, η̃) is a nonzero constant.

Remark 3.2. The T -transform of star-shaped curves is a geometric transformation, in the
sense that two star-shaped curves are T -transforms of each other if the area of the triangles
with vertices O = (0, 0), η(s), and η̃(s) is constant for every s ∈ J . In Figures 2 and 3, we show
a couple of examples of star-shaped curves and their corresponding T -transforms and illustrate
this geometric property.

2In [10], a symmetric relation is introduced for circle maps by considering the continuous version of a relation
for ideal polygons in the hyperbolic plane. Extending this relation to the lifts of these circle maps to R2,
a transformation is defined. This transformation is, essentially, our T -transform on star-shaped curves.

3Clearly, from Definition 3.1 it follows that the T -transform is reciprocal. That is, if η is a T -transform of η̃,
then η̃ is also a T -transform of η. Equivalently, η and η̃ are T -transforms of each other. We will use the different
terms indistinctively.
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Figure 4. Left: The T -transform (for χ = 0) γ̃ = Tξ,f (γ) of the null curve γ with constant bending κ7,3

(see Figure 1). The parameter ξ ̸= 0 of the T -transform is ξ = 1.01 and the transforming function f is the

solution of (3.11) with initial condition 0.1. Right: The associated pair of star-shaped cousins (η̃+, η̃−)

in plain blue and red, respectively. The curves dotted in yellow are the corresponding T -transforms,

namely, η+ and η− (cf. Figures 2 and 3).

Definition 3.3. Let γ, γ̃ : J ⊆ R −→ AdS be two null curves with associated pairs of cousins
(η+, η−) and (η̃+, η̃−), respectively. We say that γ and γ̃ are T -transforms of each other if η+
is a T -transform of η̃+ and η− is a T -transform of η̃−.

Remark 3.4. In Figures 2 and 3, we have shown the star-shaped T -transforms η̃+ and η̃− of the
pair of cousins (η+, η−) associated with the null curve γ with constant bending κ7,3 (see Figure 1).
Hence, according to Definition 3.3, the null curve γ̃ with associated pair of cousins (η̃+, η̃−) is
a T -transform of γ. The curve γ̃ is shown in Figure 4.

Using the definition of the T -transform on star-shaped curves, we next find an equation
satisfied by null curves that are T -transform of each other.

Proposition 3.5. Let γ, γ̃ : J ⊆ R −→ AdS be two null curves with associated pairs of cousins
(η+, η−) and (η̃+, η̃−), respectively. If γ and γ̃ are T -transforms of each other, then

det
(
η+, η̃+

)
det
(
η−, η̃

′
−
)
− det

(
η−, η̃−

)
det
(
η+, η̃

′
+

)
= χ (3.1)

holds for some constant χ ∈ R.

Proof. Let γ and γ̃ be two null curves that are T -transforms of each other. It then follows
from Definition 3.3 that η+ is a T -transform of η̃+ and η− is a T -transform of η̃−. More-
over, Definition 3.1 then guarantees the existence of two nonzero constants c± ∈ R such that
det(η+, η̃+) = c+ and det(η−, η̃−) = c−, respectively.

Then there exist smooth functions f± : J ⊆ R −→ R such that, respectively,

η̃+ =
1

c+

(
η′+ − f+η+

)
, (3.2)

η̃− =
1

c−

(
η′− − f−η−

)
. (3.3)

From now on, we only work with (3.2) and the sub-index +. The argument for (3.3) and the
sub-index − is analogous.

Differentiating (3.2) and using the spinorial Frenet-type equations (2.1) (respectively, (2.2)
when the sub-index is −) of γ, we obtain

η̃′+ =
1

c+

([
κ+ 1− f ′

+

]
η+ − f+η

′
+

)
, (3.4)
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where κ is the bending of γ. Since η+ and η̃+ are two star-shaped curves parameterized by
the central affine arc length, det

(
η+, η

′
+

)
= 1 and det

(
η̃+, η̃

′
+

)
= 1. Thus, it follows from (3.2)

and (3.4) that

1 = det
(
η̃+, η̃

′
+

)
=

1

c2+
det
(
η′+ − f+η+,

[
κ+ 1− f ′

+

]
η+ − f+η

′
+

)
=

1

c2+

(
f ′
+ − κ− 1 + f2

+

)
.

Therefore, the function f+ is a solution of the Riccati equation

f ′
+ + f2

+ = κ+ 1 + c2+. (3.5)

Combining (3.2), (3.4) and (3.5), we obtain that the canonical central affine frame field F̃+

along η̃+ is given in terms of the canonical central affine frame field F+ along η+ by

F̃+ =
1

c+
F+

(
−f+ f2

+ − c2+
1 −f+

)
. (3.6)

Since it will be used later, we also specify here the expression for the canonical central affine
frame field F̃− along η̃− in terms of F−, namely,

F̃− =
1

c−
F−

(
−f− f2

− − c2−
1 −f−

)
. (3.7)

From the above relation (3.6) between F̃+ and F+ (respectively, (3.7)), the spinorial Frenet-type
equations (2.1) (respectively, (2.2)) and the Riccati equation (3.5) satisfied by the function f+
(respectively, the analogue one for f−), we conclude with

F̃−1
+ dF̃+ =

1

c2+

(
−f+ c2+ − f2

+

−1 −f+

)[
F−1
+ dF+

(
−f+ f2

+ − c2+
1 −f+

)
+

(
−f ′

+ (f2
+)

′

0 −f ′
+

)]
=

(
0 2f2

+ − κ− 1− 2c2+
1 0

)
.

Hence, from (2.1) (respectively, (2.2)), the bending κ̃ of γ̃ satisfies

κ̃ = 2f2
+ − κ− 2− 2c2+. (3.8)

The analogue computations for the sub-index − show that κ̃ can also be expressed as

κ̃ = 2f2
− − κ+ 2− 2c2−. (3.9)

Therefore, setting equal (3.8) and (3.9), it follows that

f2
+ − f2

− = 2 + c2+ − c2−.

We now distinguish between three cases: 2+ c2+− c2− > 0, 2+ c2+− c2− < 0, and 2+ c2+− c2− = 0.
Assume first that 2 + c2+ − c2− > 0 holds. Then, there exists a smooth function ϕ such that

f+ = ±
√

2 + c2+ − c2− cosh(ϕ), f− =
√
2 + c2+ − c2− sinh(ϕ).

This function ϕ satisfies two differential equations arising from the Riccati equation (3.5) satisfied
by f+ and the analogue one for f−, namely,

±
√
2 + c2+ − c2− sinh(ϕ)ϕ′ +

(
2 + c2+ − c2−

)
cosh2(ϕ) = κ+ 1 + c2+,√

2 + c2+ − c2− cosh(ϕ)ϕ′ +
(
2 + c2+ − c2−

)
sinh2(ϕ) = κ− 1 + c2−.
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Subtracting both equations, we then see that ϕ′ = 0 and, hence, ϕ is constant. This implies that
both f+ and f− are also constant functions and, in addition, f+ ̸= f−.

Finally, we use (3.6) (and (3.7)) together with the fact that f+ and f− are constant functions
to compute (3.1), obtaining

χ = det(η+, η̃+) det
(
η−, η̃

′
−
)
− det(η−, η̃−) det

(
η+, η̃

′
+

)
=

1

c+

(
−f−
c−

)
− 1

c−

(
−f+
c+

)
=

f+ − f−
c+c−

,

which is a nonzero constant.
The case 2 + c2+ − c2− < 0 follows the same reasoning, hence, we avoid repeating it here.
Assume finally that 2+ c2+− c2− = 0. Then, f2

+ = f2
− holds. From the Riccati equations ((3.5)

and the analogue one) satisfied by f+ and f−, we compute

f ′
+ − f ′

− = 2 + c2+ − c2− − f2
+ + f2

− = 0.

Thus, integrating this we obtain, f+ = f− + ℓ, for some constant ℓ ∈ R. Observe that since
f2
+ = f2

−, we have two options: f+ = f− when ℓ = 0, or f+ = −f− = ℓ/2 when ℓ ̸= 0. In both
cases, we compute (3.1) as in the previous cases obtaining

χ = det(η+, η̃+) det
(
η−, η̃

′
−
)
− det(η−, η̃−) det

(
η+, η̃

′
+

)
=

f+ − f−
c+c−

=
ℓ

c+c−
,

which is a constant. This concludes the proof. ■

Equation (3.1) gives two essentially different possibilities for the T -transform on null curves,
which depend on whether χ = 0 or χ ̸= 0.

3.1 Case χ ̸= 0

We will show that the most interesting case is χ = 0, since for the case χ ̸= 0 the bending of
the null curves is constant.

Proposition 3.6. Let γ : J ⊆ R −→ AdS be a null curve with bending κ and (F+, F−) be
the spinor frame field along γ. If γ has T -transforms γ̃ satisfying (3.1) with χ ̸= 0, then the
bending κ of γ is constant and the T -transforms γ̃ are given by

γ̃(s) =
1

c+c−
F+

(
−f+ κ+ 1
1 −f+

)(
−f− 1− κ
−1 −f−

)
F−1
− ,

where c+, c− ∈ R and f+ ̸= f− are two constants such that f2
+ = κ + 1 + c2+, f

2
− = κ − 1 + c2−.

Moreover, the T -transforms γ̃ of γ have constant bending κ̃ = κ.

Proof. From the proof of Proposition 3.5, it follows that if χ ̸= 0, then both f± are constant
functions. Hence, from the Riccati equation (3.5) (and the analogue one for f−), we have
f2
+ = κ + 1 + c2+, f

2
− = κ − 1 + c2−. This proves that the bending κ of γ must be constant.

Moreover, using this in the relation between κ and the bending κ̃ of γ̃ given in (3.8), we conclude
that κ̃ = κ.

Furthermore, since according to Theorem 2.4 γ̃ = F̃+F̃
−1
− , from the expression of the central

affine frame field F̃+ given in (3.6) and the analogue one for F̃− given in (3.7) it is a straight-
forward computation to obtain the explicit expression of the T -transforms satisfying (3.1) with
χ ̸= 0. ■

Remark 3.7. From Proposition 3.6 if γ and γ̃ are T -transforms of each other for χ ̸= 0, then
they have the same constant bending. However, the converse is not true. Null curves with
constant bending have T -transforms for χ = 0 and, in particular, these T -transforms may not
have constant bending (see, for instance, Figure 4 and/or Example 5.2).
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3.2 Case χ = 0

From now on, we focus on T -transforms satisfying (3.1) for χ = 0. The next result shows how
to construct T -transforms for χ = 0 of a null curve γ beginning with solutions of a Riccati
equation.

Theorem 3.8. Let γ : J ⊆ R −→ AdS be a null curve with bending κ and (F+, F−) be the spinor
frame field along it. A null curve γ̃ : J ⊆ R −→ AdS is a T -transform of γ for χ = 0 if and
only if

γ̃ = ±F+

(
tanh(ξ) −csch(ξ)sech(ξ)f

0 coth(ξ)

)
F−1
− , (3.10)

where ξ ̸= 0 is a constant and f : J ⊆ R −→ R is a solution of the Riccati equation

f ′ + f2 = κ+ cosh(2ξ). (3.11)

Moreover, the bending of γ̃ is

κ̃ = −κ+ 2f2 − 2 cosh(2ξ). (3.12)

Proof. Let γ be a null curve with bending κ and assume that γ̃ is a T -transform of γ for χ = 0.
The proof of Proposition 3.5 shows that f+ = f− and 2+ c2+− c2− = 0. From the latter, there

must exist a nonzero constant ξ such that c+ =
√
2 sinh(ξ) and c− = ±

√
2 cosh(ξ). Moreover,

the function f+ = f− is a solution of the Riccati equation (3.5). For simplicity, we simply put
f = f±. The Riccati equation (3.5) now reads

f ′ + f2 = κ+ 1 + 2 sinh2(ξ) = κ+ cosh(2ξ),

which coincides with (3.11) in the statement. Further, from the expression of the central affine
frame field F̃+ given in (3.6), the analogue one for F̃− given in (3.7), f = f±, and the above
values of c+ and c−, we have

γ̃ = F̃+F̃
−1
− =

1

c+c−
F+

(
−f f2 − c2+
1 −f

)(
−f c2− − f2

−1 −f

)
F−1
−

= ±F+

(
tanh(ξ) −csch(ξ)sech(ξ)f

0 coth(ξ)

)
F−1
− ,

proving (3.10). Finally, we deduce from (3.8) that

κ̃ = 2f2 − κ− 2− 4 sinh2(ξ) = −κ+ 2f2 − 2 cosh(2ξ).

This concludes the forward implication.
Conversely, suppose that f : J ⊆ R −→ R is a solution of the Riccati equation (3.11) and

consider the SL(2,R)× SL(2,R)-valued map defined by
(
F̃+, F̃−

)
, where

F̃+ =
1√

2 sinh(ξ)
F+

(
−f f2 − 2 sinh2(ξ)
1 −f

)
, (3.13)

F̃− =
±1√

2 cosh(ξ)
F−

(
−f f2 − 2 cosh2(ξ)
1 −f

)
. (3.14)

Recall that (F+, F−) is the spinor frame field along the null curve γ.
Then, the map

(
F̃+, F̃−

)
is a lift of a null curve γ̃ to SL(2,R)× SL(2,R). We will first show

that
(
F̃+, F̃−

)
is indeed the spinor frame field along γ̃.
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From the spinorial Frenet-type equations (2.1) and (2.2) of γ and the definition of F̃± given
in (3.13) and (3.14), it follows that

F̃−1
+ dF̃+ =

(
0 κ̃+ 1
1 0

)
, F̃−1

− dF̃− =

(
0 κ̃− 1
1 0

)
,

where κ̃ is as in (3.12). Consequently,
(
F̃+, F̃−

)
is the spinor frame field along γ̃ and the

function κ̃ is the bending of γ̃.
We now prove that γ̃ is a T -transform of γ. Since

(
F̃+, F̃−

)
is the spinor frame field along γ̃,

the first column vectors of F̃+ and F̃− are the pair (η̃+, η̃−) of star-shaped cousins associated
with γ̃. From the expressions of F̃+ and F̃− given in (3.13) and (3.14), respectively, we have

η̃+ =
1√

2 sinh(ξ)

(
−fη+ + η′+

)
, η̃− =

±1√
2 cosh(ξ)

(
−fη− + η′−

)
.

A simple computation involving det
(
η+, η

′
+

)
= 1 and det

(
η−, η

′
−
)
= 1, then shows that

det(η+, η̃+) =
1√

2 sinh(ξ)
, det(η−, η̃−) =

±1√
2 cosh(ξ)

.

From Definition 3.1, we conclude that η+ is a T -transform of η̃+ and that η− is a T -transform
of η̃−. Finally, according to Definition 3.3, γ̃ is a T -transform of γ. ■

Definition 3.9. The null curve γ̃ given by (3.10) is called the T -transform (for χ = 0) of γ
with parameter ξ and transforming function f . We denote it by Tξ,f (γ).

Figure 4 shows an example of a T -transform (for χ = 0) γ̃ = Tξ,f (γ) of a null curve γ
computed as in (3.10) of Theorem 3.8. The initial null curve γ is the closed null curve with
constant bending κ7,3 illustrated in Figure 1. The parameter ξ ̸= 0 is a fixed real number and
the transforming function is obtained by solving the Riccati equation (3.11) for a fixed initial
condition.

In the next result, we prove, using standard arguments, a permutability theorem for the
T -transform on null curves in AdS.

Theorem 3.10. Let γ : J ⊆ R −→ AdS be a null curve with bending κ and consider two
T -transforms of γ, namely, γ1 = Tξ1,f1(γ) and γ2 = Tξ2,f2(γ) with parameters ξ1 ̸= ξ2 and
transforming functions f1 ̸= f2, respectively. Then, the functions

f2→1 = −f1 +
cosh(2ξ1)− cosh(2ξ2)

f1 − f2
, f1→2 = −f2 +

cosh(2ξ1)− cosh(2ξ2)

f1 − f2
,

satisfy, respectively, the Riccati equations

f ′
2→1 + f2

2→1 = κ1 + cosh(2ξ2), f ′
1→2 + f2

1→2 = κ2 + cosh(2ξ1),

where κ1 and κ2 are the bendings of γ1 and γ2, respectively. Moreover,

Tξ2,f2→1(Tξ1,f1(γ)) = Tξ1,f1→2(Tξ2,f2(γ)),

and the bending of Tξ2,f2→1(Tξ1,f1(γ)) is the function defined by

κ2→1 = κ− 2(cosh(2ξ1)− cosh(2ξ2))
f1 + f2
f1 − f2

+ 2

(
cosh(2ξ1)− cosh(2ξ2)

f1 − f2

)2

.

(Of course, the bending κ1→2 of Tξ1,f1→2(Tξ2,f2(γ)) is, precisely, κ1→2 = κ2→1.)



Geometric Transformations on Null Curves in the Anti-de Sitter 3-Space 11

Proof. Let γ be a null curve with bending κ and assume that γ1 = Tξ1,f1(γ) and γ2 = Tξ2,f2(γ)
are two T -transforms of γ. From Theorem 3.8, it follows that

κ1 = −κ+ 2f2
1 − 2 cosh(2ξ1), κ2 = −κ+ 2f2

2 − 2 cosh(2ξ2)

are the bendings of γ1 and γ2, respectively. In addition, the transforming functions f1 and f2
are solutions of the Riccati equations

f ′
1 + f2

1 = κ+ cosh(2ξ1), f ′
2 + f2

2 = κ+ cosh(2ξ2),

respectively.
Then, an elementary computation involving above differential equations shows that the func-

tions f2→1 and f1→2 of the statement satisfy the desired Riccati equations. Therefore, f2→1 is
a transforming function of γ1 with parameter ξ2, while f1→2 is a transforming function of γ2
with parameter ξ1.

For simplicity, define the SL(2,R)-valued maps

G+(ξ, ϕ) =
1√

2 sinh(ξ)

(
−ϕ ϕ2 − 2 sinh2(ξ)
1 −ϕ

)
,

G−(ξ, ϕ) =
±1√

2 cosh(ξ)

(
−ϕ ϕ2 − 2 cosh2(ξ)
1 −ϕ

)
.

As shown in the proof of Theorem 3.8, the maps (F+G+(ξ, ϕ), F−G−(ξ, ϕ)), for suitable val-
ues ξ ̸= 0 and solutions ϕ of the corresponding Riccati equations, are the spinor frame fields
along T -transforms of null curves with spinor frame field (F+, F−). In particular, we have that
(F+G+(ξ1, f1), F−G−(ξ1, f1)) is the spinor frame field along γ1 and (F+G+(ξ2, f2), F−G−(ξ2, f2))
is the spinor frame field along γ2. Observe that, recursively, it follows that the map

([F+G+(ξ1, f1)]G+(ξ2, f2→1), [F−G−(ξ1, f1)]G−(ξ2, f2→1))

is the spinor frame field along Tξ2,f2→1(γ1) since (F+G+(ξ1, f1), F−G−(ξ1, f1)) is the spinor frame
field along γ1. Similarly,

([F+G+(ξ2, f2)]G+(ξ1, f1→2), [F−G−(ξ2, f2)]G−(ξ1, f1→2))

is the spinor frame field along Tξ1,f1→2(γ2).
It is now a computational matter to check that

G+(ξ1, f1)G+(ξ2, f2→1) = G+(ξ2, f2)G+(ξ1, f1→2),

G−(ξ1, f1)G−(ξ2, f2→1) = G−(ξ2, f2)G−(ξ1, f1→2),

which implies that Tξ2,f2→1(γ1) = Tξ1,f1→2(γ2) holds.
It remains to prove the expression of the bending κ2→1 of Tξ2,f2→1(γ1). Since Tξ2,f2→1(γ1) is

a T -transform of γ1 with parameter ξ2 and transforming function f2→1, it follows from Theo-
rem 3.8 that

κ2→1 = −κ1 + 2f2
2→1 − 2 cosh(2ξ2). (3.15)

At the same time, γ1 = Tξ1,f1(γ) is a T -transform of γ with parameter ξ1 and transforming
function f1. Hence, κ1 = −κ+ 2f2

1 − 2 cosh(2ξ1) which we substitute in (3.15), obtaining

κ2→1 = κ− 2f2
1 + 2 cosh(2ξ1) + 2f2

2→1 − 2 cosh(2ξ2).

The result then follows immediately from the definition of f2→1. ■
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4 Geometric realization of the Bäcklund transformation
for the KdV

In this section, we will use the T -transform on null curves to show a geometric realization of the
Bäcklund transformation for the KdV equation. We first briefly recall some basic facts about
this Bäcklund transformation.

4.1 Bäcklund transformation for the KdV

The Korteweg–de Vries (KdV) equation is the PDE given by

∂tκ+ ∂3
sκ− 6κ∂sκ = 0. (4.1)

Let J, I ⊆ R be two open intervals (for convenience, we assume 0 ∈ J, I) and consider
a solution κ : (s, t) ∈ J × I ⊆ R2 7−→ κ(s, t) ∈ R of the KdV equation (4.1). The Bäcklund
transform of κ with spectral parameter λ ∈ R \ {0} and transforming function f : J × I ⊆
R2 −→ R is the function defined by

κ̃ = −κ+ 2f2 − 2λ. (4.2)

In [14], Wahlquist and Estabrook showed that if the transforming function f(s, t) is a solution
of the so-called Wahlquist–Estabrook equation

df =
(
κ− f2 + λ

)
ds+

(
4λ
[
f2 − λ

]
− 2
[
f2 + λ

]
+ 2κ2 + 2f∂sκ− ∂2

sκ
)
dt, (4.3)

then the Bäcklund transform (4.2) of κ with spectral parameter λ ̸= 0 and transforming func-
tion f is another solution of the KdV equation (4.1).

The Wahlquist–Estabrook equation (4.3) is an overdetermined system whose compatibility
equation is the KdV equation (4.1). As a consequence, this system is locally solvable, in the
sense that for every (so, to) ∈ J × I ⊆ R2 and every constant c ∈ R there locally exists a unique
solution of (4.3) with initial condition f(so, to) = c.

We will next describe a procedure to construct this solution. This method will employ the
extended frames of solutions of the KdV equation [11].

For a function κ : J × I ⊆ R2 −→ R and a constant λ ∈ R, define the sl(2,R)-valued 1-form

Γλ = Kλ ds+ Pλ dt, (4.4)

where Kλ and Pλ are given by

Kλ =

(
0 κ+ λ
1 0

)
, Pλ =

(
−∂sκ −∂2

sκ+ 2κ2 − 2λκ− 4λ2

2κ− 4λ ∂sκ

)
. (4.5)

The 1-form Γλ satisfies the Maurer–Cartan compatibility equation if and only if the func-
tion κ(s, t) satisfies the KdV equation (4.1). Consequently, as shown in [15], for a given solution κ
of (4.1) and every λ ∈ R there exists a map Eλ : J × I ⊆ R2 −→ SL(2,R) such that

dEλ = Eλ Γλ, Eλ(0, 0) = Id. (4.6)

The maps Eλ depend in a real analytic fashion on λ ∈ R. The map Eλ is called an extended
frame of κ with spectral parameter λ ∈ R [11].4

4Observe that in the paper [11], the spectral parameter λ is a complex number, while here we are restricting
it to real values.
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Consider the extended frames Eλ, λ ∈ R, of a solution κ of the KdV equation (4.1) and define(
x
y

)
= E−1

λ Eλ(so, to)

(
−c
1

)
. (4.7)

Then, the function f = −x/y is a solution5 of the Wahlquist–Estabrook equation (4.3) with
initial condition f(so, to) = c [11].

Remark 4.1. If f(s, t) is a solution of the Wahlquist–Estabrook equation (4.3), then for every
t ∈ I fixed the function ft(s) is a solution of the Riccati equation (3.11).

4.2 Geometric realization

In order to describe the geometric realization of the Bäcklund transformation for the KdV
equation, we begin by recalling the definition of the LIEN flow and a result shown in [8] regarding
the procedure to construct the solutions of this flow.

Consider a smooth one parameter family of null curves γ : (s, t) ∈ J × I ⊆ R2 7−→ γ(s, t) =
γt(s) ∈ AdS without inflection points and parameterized by the proper time. In other words, for
each t ∈ I, we have a null curve γt : J ⊆ R −→ AdS satisfying the assumptions of Remark 2.2.

The LIEN flow is the evolution equation for null curves in AdS given by

∂tγ = 2∂3
sγ − 6κ∂sγ. (4.8)

In [8], we showed that the induced evolution equation on the bending κ of γ is the KdV equa-
tion (4.1). In addition, we gave a procedure to construct solutions of the LIEN flow (4.8)
beginning with solutions κ of (4.1) and employing suitable extended frames Eλ of κ. For the
sake of completeness, we state this result here.

Theorem 4.2 ([8, Theorem 4.2]). Let γ : J × I ⊆ R2 −→ AdS be a solution of the LIEN
flow (4.8). Then, the bending κ(s, t) of γ(s, t) evolves according to the KdV equation (4.1).

Conversely, if κ : J × I ⊆ R2 −→ R is a smooth solution of the KdV equation (4.1), then

γ = E1E
−1
−1 : J × I ⊆ R2 −→ AdS

is a solution of the LIEN flow (4.8) with bending κ, where Eλ, λ = −1, 1, are the extended
frames of κ with spectral parameters λ = −1, 1, respectively.

Remark 4.3. In addition to the statement of Theorem 4.2, in the proof of this result given
in [8], it was also shown that the map (E1, E−1) is the spinor frame field along γt, for every
fixed t ∈ I.

Combining this result and Theorem 3.8 involving T -transforms, we can give a geometric
interpretation of the Bäcklund transformation of the KdV as induced by the T -transform of
a solution of the LIEN flow (4.8).

Theorem 4.4. Let γ : J × I ⊆ R2 −→ AdS be a solution of the LIEN flow (4.8) with bend-
ing κ(s, t) and denote by (F+, F−) the spinor frame field along γ(s, t). Given a constant ξ ̸= 0
and a solution f : J×I ⊆ R2 −→ R of the Wahlquist–Estabrook equation (4.3) for λ = cosh(2ξ),
define the map γ̃ : J × I ⊆ R2 −→ AdS by

γ̃ = ±F+

(
tanh(ξ) −csch(ξ)sech(ξ)f

0 coth(ξ)

)
F−1
− . (4.9)

Then,

5The function f = −x/y is a local solution of (4.3). Indeed, this solution is singular at the zero locus of the
function y.
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1. For every t ∈ I, the null curve γ̃t is a T -transform of γt with parameter ξ and transforming
function ft.

2. The map γ̃ : J × I ⊆ R2 −→ AdS is a solution of the LIEN flow (4.8) where its bending κ̃
is the Bäcklund transform of κ with spectral parameter λ and transforming function f .

Proof. Suppose that γ is a solution of the LIEN flow (4.8) and that f satisfies the Wahlquist–
Estabrook equation (4.3). As noticed in Remark 4.1, for every t ∈ I, the function ft(s) is
a solution of the Riccati equation (3.11).

It then follows from Theorem 3.8 that, for every t ∈ I fixed, the null curve γ̃t(s) = γ̃(s, t) de-
fined on (4.9) of the statement is a T -transform of the null curve γt(s) = γ(s, t) with parameter ξ
and transforming function ft. In addition, the bending κ̃t of γ̃t is

κ̃t = −κt + 2f2
t − 2 cosh(2ξ),

where κt is the bending of γt. Clearly, since λ = cosh(2ξ), κ̃t is the Bäcklund transform of κt
with spectral parameter λ and transforming function ft.

As mentioned above, the Bäcklund transform κ̃t is also a solution of the KdV equation (4.1).
Hence, we deduce from Theorem 4.2 (see also Remark 4.3) and the expressions of F̃+ and F̃−
given in (3.6) and (3.7), that γ̃ : J × I ⊆ R2 −→ AdS is a solution of the LIEN flow. ■

Definition 4.5. In analogy with the T -transform (for χ = 0) on null curves, the solution γ̃ of the
LIEN flow (4.8) given by (4.9) is called the T -transform of γ with parameter ξ and transforming
function f . With some abuse of notation, we also denote it by Tξ,f (γ).

The extension to solutions of the LIEN flow (4.8) of the T -transform for χ = 0 on null curves
also satisfies a permutability theorem.

Theorem 4.6. Let γ : J × I ⊆ R2 −→ AdS be a solution of the LIEN flow (4.8) with bending
κ(s, t) and consider two T -transforms of γ, namely, γ1 = Tξ1,f1(γ) and γ2 = Tξ2,f2(γ) with
parameters ξ1 ̸= ξ2 and transforming functions f1 ̸= f2, respectively. Then, the function6 f2→1

(defined as in Theorem 3.10) satisfies the Wahlquist–Estabrook equation (4.3) for κ1 and λ2 =
cosh(2ξ2), while f1→2 (also defined as in Theorem 3.10) satisfies (4.3) for κ2 and λ1 = cosh(2ξ1).
Moreover, Tξ2,f2→1(Tξ1,f1(γ)) = Tξ1,f1→2(Tξ2,f2(γ)), and the bending of Tξ2,f2→1(Tξ1,f1(γ)) is the
function κ2→1 = κ1→2 (defined as in Theorem 3.10). In particular, the bending κ2→1 is a solution
of the KdV equation (4.1).

Proof. The proof is analogous to that of Theorem 3.10. The only remaining part to prove is
that f2→1 and f1→2 satisfy the suitable Wahlquist–Estabrook equations (4.3). However, this is
a consequence of the classical permutability theorem for the Bäcklund transform of the KdV
equation (4.1). ■

5 Construction procedure

We finish this paper illustrating how to implement the construction of the T -transforms for
χ = 0 for solutions of the LIEN flow (4.8) with constant bending.

Consider a constant solution κ of the KdV equation (4.1). We first build the extended
frames Eλ of κ with spectral parameter λ ∈ R. To this end, we must integrate the sl(2,R)-valued
1-form Γλ given in (4.4). Since κ is constant, it follows from the Maurer–Cartan compatibility
equation dΓλ +Γλ ∧Γλ = 0 that Kλ and Pλ commute (see (4.5) for their definition). Therefore,

6Observe that the functions f2→1, f1→2, κ2→1 and κ1→2 of the statement of Theorem 4.6 are functions of two
variables (s, t) ∈ J×I ⊆ R2, while the analogue ones of Theorem 3.10 are functions of just one variable s ∈ J ⊆ R.
For simplicity, we avoid explicitly describing this in the statement.
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the map Eλ(s, t) = Exp(Kλs + Pλt) satisfies (4.6) and so it is an extended frame of κ with
spectral parameter λ ∈ R. A computation involving the definition of Kλ and Pλ given in (4.5)
shows that

Eλ(s, t) =

(
coshσ(s, t)

√
κ+ λ sinhσ(s, t)

1√
κ+λ

sinhσ(s, t) coshσ(s, t)

)
,

where σ(s, t) =
√
κ+ λ(s+2[κ− 2λ]t). Here, we are understanding that sinh(ix) = i sin(x) and

cosh(ix) = cos(x).
We will next construct a Bäcklund transform of κ with spectral parameter λ ̸= 0 and trans-

forming function f . Recall that the transforming function is a solution of the Wahlquist–
Estabrook equation (4.3). Hence, we will use the method explained in Subsection 4.1 to con-
struct this solution. If c ∈ R is the initial condition, from (4.7) we deduce that the solution
f = −x/y of the Wahlquist–Estabrook equation (4.3) is

f(s, t) =
c
√
κ+ λ coshσ(s, t) + (κ+ λ) sinhσ(s, t)√

κ+ λ coshσ(s, t) + c sinhσ(s, t)
. (5.1)

Then, κ̃ = −κ−2λ+2f2 is the Bäcklund transform of κ with spectral parameter λ ∈ R, that is,
a traveling wave solution of the KdV equation (4.1). These solutions are also known as 1-soliton
solutions.

The extended frame Ẽω of κ̃ with spectral parameter ω ̸= λ is given by

Ẽω(s, t) =
1

ω − λ
R(−f, λ, ω)Eλ(s, t)R(−f, λ, ω), (5.2)

where

R(x, y, z) =

(
x x2 − y + z
1 x

)
.

This can be verified by checking that Ẽω is a solution of (4.6) for κ̃ and ω ∈ R.
Iterating the process and using again (4.7) to construct a solution of the Wahlquist–Estabrook

equation (4.3) as above
(
but now for Ẽω given in (5.2)

)
, one can compute the transforming

function7 f̃ of κ̃ with spectral parameter ω ̸= λ and initial condition c̃ as well as the corresponding
Bäcklund transform κ̂ of κ̃, which is a 2-soliton solution of the KdV equation (4.1).

Remark 5.1. At each step, the transforming functions may have singularities. Therefore, to
obtain regular solutions, the constants involved in the construction must be chosen appropriately.

In the following example, we consider the particular case where the original null curve is
closed and has constant bending.

Example 5.2. Consider the constant solutions of the KdV equation (4.1) given by (cf. Exam-
ple 2.6)

κm,n = −m2 + n2

m2 − n2
,

wherem > n are relatively prime natural numbers. In these cases, the associated null curves γm,n

in AdS are closed.

7After the first step, the construction of the extended frames involve only algebraic manipulations, which can
be performed with the help of any software of symbolic computations. However, the resulting formulas are very
long and, hence, they have been omitted here.
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Figure 5. Left: The transforming function fm,n of κm,n with spectral parameter λp and initial condi-

tion c = 0. Right: The Bäcklund transform κ̃m,n of κm,n with spectral parameter λp and transforming

function fm,n. The function κ̃m,n represents a 1-soliton solution of the KdV equation (4.1). In both

cases, m = 4, n = 1 and p = 1.4.

Figure 6. Left: The transforming function f̃m,n of κ̃m,n with spectral parameter ωp,r. Right: The Bäck-

lund transform κ̂m,n of κ̃m,n with spectral parameter ωp,r and transforming function f̃m,n. The func-

tion κ̂m,n represents a 2-soliton solution of the KdV equation (4.1). In both cases, m = 4, n = 1, p = 1.4

and r = 1.

Then, for a real number p > 0 fixed we can construct the transforming function fm,n of κm,n

with spectral parameter

λp = p+
m2 + n2

m2 − n2
,

and initial condition c = 0, simply substituting this data in (5.1). Moreover, from (4.2), we
can also obtain the corresponding Bäcklund transform κ̃m,n of κm,n. In Figure 5 we show the
transforming function fm,n (left) and the corresponding Bäcklund transform κ̃m,n (right) for
suitable choices of m > n and p > 0.

Employing (4.7) and (5.2), we may iterate the process obtaining the transforming func-
tion f̃m,n of κ̃m,n with spectral parameter

ωp,r = p+ r +
m2 + n2

m2 − n2
, r > 0,

and initial condition c̃ = 0, as well as the Bäcklund transform κ̂m,n of κ̃m,n with spectral param-
eter ωp,r and transforming function f̃m,n. An example of the transforming function f̃m,n and of
its corresponding Bäcklund transform is illustrated in Figure 6 (left and right, respectively).

As explained in Example 2.6, the null curve γm,n in AdS with bending κm,n is a torus knot.
In addition, we deduce from Theorem 4.2 that its evolution by the LIEN flow (4.8) is given
by γ = E1E

−1
−1 , where Eλ are the extended frames of κm,n with spectral parameter λ = −1, 1,

respectively.
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Figure 7. Left: The graph of the rapidly decaying function s ∈ R 7−→ κ̃m,n(s, 0)− κm,n. On the left of

the yellow point and on the right of the red point |κ̃m,n(s, 0) − κm,n| ≲ 2.31 × 10−9. Right: The graph

of the function s ∈ R 7−→ κ̂m,n(s, 0) − κm,n. On the left of the yellow point and on the right of the red

point |κ̂m,n(s, 0)− κm,n| ≲ 1.73× 10−8. These graphs have been computed for the values m = 4, n = 1,

p = 1.4 and r = 1.

Figure 8. Left: The null curve s ∈ R 7−→ Tξλ,fm,n(γ(s, 0)). Center: The two disjoint, but congruent

torus knots. Right: The arc connecting the two torus knots. For this example, we have fixed m = 4,

n = 1 and p = 1.4.

Let ξλ ̸= 0 be a constant such that cosh(2ξλ) = λp. Then, the T -transform for χ = 0
of γ with parameter ξλ and transforming function fm,n is Tξλ,fm,n(γ) (its explicit expression
is given in (4.9) of Theorem 4.4). Since κ̃m,n is a traveling wave solution of the KdV equa-
tion (4.1), it follows that Tξλ,fm,n(γ) is a solution of the LIEN flow (4.8) consisting of the
evolution of the initial condition γm,n by rigid motions. Furthermore, for every t ∈ I, the func-
tion s ∈ R 7−→ κ̃m,n(s, t)− κm,n is smooth and rapidly decaying (see the picture on the left of
Figure 7). This implies that, for every t ∈ I, the null curve s ∈ R 7−→ Tξλ,fm,n(γ(s, t)) tends
asymptotically to two closed null curves with constant bending κm,n as s → ±∞. More precisely,
in practical terms, this curve is made up of two disjoint, but congruent, torus knots connected
by an arc (see Figure 8).

Finally, we build T -transforms for χ = 0 of Tξλ,fm,n(γ). For this, we fix r > 0 and a con-

stant ξω ̸= 0 such that cosh(2ξω) = ωp,r. Using (5.2), we compute the extended frames Ẽω of κ̃m,n

and the transforming function f̃m,n. Then, the T -transform for χ = 0 of Tξλ,fm,n(γ) with param-
eter ξω ̸= 0 and transforming function f̃m,n is given by (4.9) and denoted by T

ξω ,f̃m,n

(
Tξλ,fm,n(γ)

)
.

Moreover, the bending of T
ξω ,f̃m,n

(
Tξλ,fm,n(γ)

)
is the 2-soliton solution κ̂m,n of the KdV equa-

tion (4.1). In this case, the evolution is not by rigid motions. However, as in the previous case,
the functions s ∈ R 7−→ κ̂m,n(s, t) − κm,n are rapidly decaying (see the picture on the right of
Figure 7). Thus, the geometrical structure of the evolving curves is similar to the previous case
(see Figure 9).

In principle, the procedure can be inductively repeated to construct the iterated T -transforms
of γm,n.
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Figure 9. Left: The null curve s ∈ R 7−→ Tξω,f̃m,n

(
Tξλ,fm,n(γ(s, 0))

)
. Center: The two disjoint, but

congruent torus knots. Right: The arc connecting the two torus knots. For this example, we have fixed

m = 4, n = 1, p = 1.4 and r = 1.
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