Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 106, 27 pages      arXiv:2306.12995      https://doi.org/10.3842/SIGMA.2024.106

Global Magni4icence, or: 4G Networks

Nikita Nekrasov a and Nicolò Piazzalunga b
a) Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY 11794-3636, USA
b) New High Energy Theory Center, Rutgers University, USA

Received February 20, 2024, in final form November 15, 2024; Published online November 28, 2024

Abstract
The global magnificent four theory is the homological version of a maximally supersymmetric $(8+1)$-dimensional gauge theory on a Calabi-Yau fourfold fibered over a circle. In the case of a toric fourfold we conjecture the formula for its twisted Witten index. String-theoretically we count the BPS states of a system of $D0$-$D2$-$D4$-$D6$-$D8$-branes on the Calabi-Yau fourfold in the presence of a large Neveu-Schwarz $B$-field. Mathematically, we develop the equivariant $K$-theoretic DT4 theory, by constructing the four-valent vertex with generic plane partition asymptotics. Physically, the vertex is a supersymmetric localization of a non-commutative gauge theory in $8+1$ dimensions.

Key words: vertex; Calabi-Yau fourfold; Donaldson-Thomas; localization.

pdf (614 kb)   tex (42 kb)  

References

  1. Arnold V.I., Symplectization, complexification and mathematical trinities, in The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., Vol. 24, American Mathematical Society, Providence, RI, 1999, 23-37.
  2. Atiyah M.F., Instantons in two and four dimensions, Comm. Math. Phys. 93 (1984), 437-451.
  3. Bae Y., Kool M., Park H., Counting surfaces on Calabi-Yau 4-folds I: foundations, arXiv:2208.09474.
  4. Bae Y., Kool M., Park H., Counting surfaces on Calabi-Yau 4-folds II: $\mathrm{DT}$-$\mathrm{PT}_0$ correspondence, arXiv:2402.06526.
  5. Baulieu L., Kanno H., Singer I.M., Cohomological Yang-Mills theory in eight dimensions, in Dualities in Gauge and String Theories (Seoul/Sokcho, 1997), World Scientific Publishing, River Edge, NJ, 1998, 365-373, arXiv:hep-th/9705127.
  6. Baulieu L., Losev A., Nekrasov N., Chern-Simons and twisted supersymmetry in various dimensions, Nuclear Phys. B 522 (1998), 82-104, arXiv:hep-th/9707174.
  7. Belavin A.A., Polyakov A.M., Schwartz A.S., Tyupkin Y.S., Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975), 85-87.
  8. Bershadsky M., Johansen A., Sadov V., Vafa C., Topological reduction of $4$D SYM to $2$D $\sigma$-models, Nuclear Phys. B 448 (1995), 166-186, arXiv:hep-th/9501096.
  9. Bojko A., Orientations for DT invariants on quasi-projective Calabi-Yau 4-folds, Adv. Math. 388 (2021), 107859, 59 pages, arXiv:2008.08441.
  10. Bonelli G., Fasola N., Tanzini A., Zenkevich Y., ADHM in 8d, coloured solid partitions and Donaldson-Thomas invariants on orbifolds, J. Geom. Phys. 191 (2023), 104910, 27 pages, arXiv:2011.02366.
  11. Borisov D., Joyce D., Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds, Geom. Topol. 21 (2017), 3231-3311, arXiv:1504.00690.
  12. Cao Y., Gross J., Joyce D., Orientability of moduli spaces of ${\rm Spin}(7)$-instantons and coherent sheaves on Calabi-Yau 4-folds, Adv. Math. 368 (2020), 107134, 60 pages, arXiv:1811.09658.
  13. Cao Y., Kool M., Monavari S., $K$-theoretic DT/PT correspondence for toric Calabi-Yau 4-folds, Comm. Math. Phys. 396 (2022), 225-264, arXiv:1906.07856.
  14. Cao Y., Kool M., Monavari S., A Donaldson-Thomas crepant resolution conjecture on Calabi-Yau 4-folds, Trans. Amer. Math. Soc. 376 (2023), 8225-8268, arXiv:2301.11629.
  15. Cao Y., Leung C.L., Donaldson-Thomas theory for Calabi-Yau 4-folds, arXiv:1407.7659.
  16. Cao Y., Zhao G., Quasimaps to quivers with potentials, arXiv:2306.01302.
  17. Chekeres O., Losev A.S., Mnev P., Youmans D.R., Theory of holomorphic maps of two-dimensional complex manifolds to toric manifolds and type-A multi-string theory, JETP Lett. 115 (2022), 52-57, arXiv:2111.06836.
  18. Corrigan E., Devchand C., Fairlie D.B., Nuyts J., First-order equations for gauge fields in spaces of dimension greater than four, Nuclear Phys. B 214 (1983), 452-464.
  19. Dedushenko M., Nekrasov N., Interfaces and quantum algebras, II: Cigar partition function, arXiv:2306.16434.
  20. Denef F., Moore G.W., Split states, entropy enigmas, holes and halos, J. High Energy Phys. 2011 (2011), no. 11, 129, 152 pages, arXiv:hep-th/0702146.
  21. Dijkgraaf R., Heidenreich B., Jefferson P., Vafa C., Negative branes, supergroups and the signature of spacetime, J. High Energy Phys. 2018 (2018), no. 2, 050, 61 pages, arXiv:1603.05665.
  22. Douglas M.R., Moore G.W., D-branes, quivers, and ALE instantons, arXiv:hep-th/9603167.
  23. Fucito F., Morales J.F., Poghossian R., The chiral ring of gauge theories in eight dimensions, J. High Energy Phys. 2021 (2021), no. 4, 198, 15 pages, arXiv:2010.10235.
  24. Iqbal A., Vafa C., Nekrasov N., Okounkov A., Quantum foam and topological strings, J. High Energy Phys. 2008 (2008), no. 4, 011, 47 pages, arXiv:hep-th/0312022.
  25. Iritani H., Gamma classes and quantum cohomology, in International Congress of Mathematicians, EMS Press, Berlin, 2023, 2552-2574, arXiv:2307.15938.
  26. Kanno H., Quiver matrix model of ADHM type and BPS state counting in diverse dimensions, PTEP. Prog. Theor. Exp. Phys. 2020 (2020), 11B104, 22 pages, arXiv:2004.05760.
  27. Kimura T., Pestun V., Super instanton counting and localization, arXiv:1905.01513.
  28. Losev A., Nekrasov N., Shatashvili S., Freckled instantons in two and four dimensions, Classical Quantum Gravity 17 (2000), 1181-1187, arXiv:hep-th/9911099.
  29. Maulik D., Nekrasov N., Okounkov A., Pandharipande R., Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), 1263-1285, arXiv:math.AG/0312059.
  30. Maulik D., Nekrasov N., Okounkov A., Pandharipande R., Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math. 142 (2006), 1286-1304, arXiv:math.AG/0406092.
  31. Monavari S., Canonical vertex formalism in DT theory of toric Calabi-Yau 4-folds, J. Geom. Phys. 174 (2022), 104466, 15 pages, arXiv:2203.11381.
  32. Monavari S., Equivariant enumerative geometry and Donaldson-Thomas theory, Ph.D. Thesis, Utrecht University, 2022.
  33. Nakajima H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416.
  34. Nakajima H., Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Ser., Vol. 18, American Mathematical Society, Providence, RI, 1999, arXiv:1401.6782.
  35. Nekrasov N., Lectures on open strings, and noncommutative gauge theories, in Unity from Duality: Gravity, Gauge Theory and Strings (Les Houches, 2001), NATO Adv. Study Inst., EDP Sciences, Les Ulis, 2003, 477-495, arXiv:hep-th/0203109.
  36. Nekrasov N., A la recherche de la $M$-theorie perdue. $\mathbf{Z}$-theory: chasing $\mathfrak{m}/f$-theory, arXiv:hep-th/0412021.
  37. Nekrasov N., Localizing gauge theories, in XIVth International Congress on Mathematical Physics, World Scientific Publishing, Hackensack, NJ, 2005, 645-654.
  38. Nekrasov N., $\mathbf{Z}$-theory: chasing $\mathfrak{m}/f$ theory, C. R. Phys. 6 (2005), 261-269.
  39. Nekrasov N., Instanton partition functions and M-theory, Jpn. J. Math. 4 (2009), 63-93.
  40. Nekrasov N., $BPS/CFT$ correspondence: non-perturbative Dyson-Schwinger equations and qq-characters, J. High Energy Phys. 2016 (2016), no. 3, 181, 70 pages, arXiv:1512.05388.
  41. Nekrasov N., Magnificent four, Adv. Theor. Math. Phys. 24 (2020), 1171-1202, arXiv:1712.08128.
  42. Nekrasov N., Okounkov A., Membranes and sheaves, Algebr. Geom. 3 (2016), 320-369, arXiv:1404.2323.
  43. Nekrasov N., Piazzalunga N., Magnificent four with colors, Comm. Math. Phys. 372 (2019), 573-597, arXiv:1808.05206.
  44. Nekrasov N., Prabhakar N.S., Spiked instantons from intersecting D-branes, Nuclear Phys. B 914 (2017), 257-300, arXiv:1611.03478.
  45. Nekrasov N., Schwarz A., Instantons on noncommutative $\mathbb{R}^4$, and $(2,0)$ superconformal six-dimensional theory, Comm. Math. Phys. 198 (1998), 689-703, arXiv:hep-th/9802068.
  46. Oh J., Thomas R.P., Counting sheaves on Calabi-Yau 4-folds, I, Duke Math. J. 172 (2023), 1333-1409, arXiv:2009.05542.
  47. Piazzalunga N., The one-legged K-theoretic vertex of fourfolds from 3d gauge theory, arXiv:2306.12405.
  48. Pomoni E., Yan W., Zhang X., Tetrahedron instantons, Comm. Math. Phys. 393 (2022), 781-838, arXiv:2106.11611.
  49. Seiberg N., Five-dimensional SUSY field theories, non-trivial fixed points and string dynamics, Phys. Lett. B 388 (1996), 753-760, arXiv:hep-th/9608111.
  50. Seiberg N., A note on background independence in noncommutative gauge theories, Matrix model, and tachyon condensation, J. High Energy Phys. 2000 (2000), no. 9, 003, 16 pages, arXiv:hep-th/0008013.
  51. Szabo R.J., Tirelli M., Instanton counting and Donaldson-Thomas theory on toric Calabi-Yau four-orbifolds, Adv. Theor. Math. Phys. 27 (2023), 1665-1757, arXiv:2301.13069.
  52. Witten E., Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 769-796, arXiv:hep-th/9411102.

Previous article  Next article  Contents of Volume 20 (2024)