|
SIGMA 20 (2024), 106, 27 pages arXiv:2306.12995
https://doi.org/10.3842/SIGMA.2024.106
Global Magni4icence, or: 4G Networks
Nikita Nekrasov a and Nicolò Piazzalunga b
a) Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY 11794-3636, USA
b) New High Energy Theory Center, Rutgers University, USA
Received February 20, 2024, in final form November 15, 2024; Published online November 28, 2024
Abstract
The global magnificent four theory is the homological version of a maximally supersymmetric $(8+1)$-dimensional gauge theory on a Calabi-Yau fourfold fibered over a circle. In the case of a toric fourfold we conjecture the formula for its twisted Witten index. String-theoretically we count the BPS states of a system of $D0$-$D2$-$D4$-$D6$-$D8$-branes on the Calabi-Yau fourfold in the presence of a large Neveu-Schwarz $B$-field. Mathematically, we develop the equivariant $K$-theoretic DT4 theory, by constructing the four-valent vertex with generic plane partition asymptotics. Physically, the vertex is a supersymmetric localization of a non-commutative gauge theory in $8+1$ dimensions.
Key words: vertex; Calabi-Yau fourfold; Donaldson-Thomas; localization.
pdf (614 kb)
tex (42 kb)
References
- Arnold V.I., Symplectization, complexification and mathematical trinities, in The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., Vol. 24, American Mathematical Society, Providence, RI, 1999, 23-37.
- Atiyah M.F., Instantons in two and four dimensions, Comm. Math. Phys. 93 (1984), 437-451.
- Bae Y., Kool M., Park H., Counting surfaces on Calabi-Yau 4-folds I: foundations, arXiv:2208.09474.
- Bae Y., Kool M., Park H., Counting surfaces on Calabi-Yau 4-folds II: $\mathrm{DT}$-$\mathrm{PT}_0$ correspondence, arXiv:2402.06526.
- Baulieu L., Kanno H., Singer I.M., Cohomological Yang-Mills theory in eight dimensions, in Dualities in Gauge and String Theories (Seoul/Sokcho, 1997), World Scientific Publishing, River Edge, NJ, 1998, 365-373, arXiv:hep-th/9705127.
- Baulieu L., Losev A., Nekrasov N., Chern-Simons and twisted supersymmetry in various dimensions, Nuclear Phys. B 522 (1998), 82-104, arXiv:hep-th/9707174.
- Belavin A.A., Polyakov A.M., Schwartz A.S., Tyupkin Y.S., Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975), 85-87.
- Bershadsky M., Johansen A., Sadov V., Vafa C., Topological reduction of $4$D SYM to $2$D $\sigma$-models, Nuclear Phys. B 448 (1995), 166-186, arXiv:hep-th/9501096.
- Bojko A., Orientations for DT invariants on quasi-projective Calabi-Yau 4-folds, Adv. Math. 388 (2021), 107859, 59 pages, arXiv:2008.08441.
- Bonelli G., Fasola N., Tanzini A., Zenkevich Y., ADHM in 8d, coloured solid partitions and Donaldson-Thomas invariants on orbifolds, J. Geom. Phys. 191 (2023), 104910, 27 pages, arXiv:2011.02366.
- Borisov D., Joyce D., Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds, Geom. Topol. 21 (2017), 3231-3311, arXiv:1504.00690.
- Cao Y., Gross J., Joyce D., Orientability of moduli spaces of ${\rm Spin}(7)$-instantons and coherent sheaves on Calabi-Yau 4-folds, Adv. Math. 368 (2020), 107134, 60 pages, arXiv:1811.09658.
- Cao Y., Kool M., Monavari S., $K$-theoretic DT/PT correspondence for toric Calabi-Yau 4-folds, Comm. Math. Phys. 396 (2022), 225-264, arXiv:1906.07856.
- Cao Y., Kool M., Monavari S., A Donaldson-Thomas crepant resolution conjecture on Calabi-Yau 4-folds, Trans. Amer. Math. Soc. 376 (2023), 8225-8268, arXiv:2301.11629.
- Cao Y., Leung C.L., Donaldson-Thomas theory for Calabi-Yau 4-folds, arXiv:1407.7659.
- Cao Y., Zhao G., Quasimaps to quivers with potentials, arXiv:2306.01302.
- Chekeres O., Losev A.S., Mnev P., Youmans D.R., Theory of holomorphic maps of two-dimensional complex manifolds to toric manifolds and type-A multi-string theory, JETP Lett. 115 (2022), 52-57, arXiv:2111.06836.
- Corrigan E., Devchand C., Fairlie D.B., Nuyts J., First-order equations for gauge fields in spaces of dimension greater than four, Nuclear Phys. B 214 (1983), 452-464.
- Dedushenko M., Nekrasov N., Interfaces and quantum algebras, II: Cigar partition function, arXiv:2306.16434.
- Denef F., Moore G.W., Split states, entropy enigmas, holes and halos, J. High Energy Phys. 2011 (2011), no. 11, 129, 152 pages, arXiv:hep-th/0702146.
- Dijkgraaf R., Heidenreich B., Jefferson P., Vafa C., Negative branes, supergroups and the signature of spacetime, J. High Energy Phys. 2018 (2018), no. 2, 050, 61 pages, arXiv:1603.05665.
- Douglas M.R., Moore G.W., D-branes, quivers, and ALE instantons, arXiv:hep-th/9603167.
- Fucito F., Morales J.F., Poghossian R., The chiral ring of gauge theories in eight dimensions, J. High Energy Phys. 2021 (2021), no. 4, 198, 15 pages, arXiv:2010.10235.
- Iqbal A., Vafa C., Nekrasov N., Okounkov A., Quantum foam and topological strings, J. High Energy Phys. 2008 (2008), no. 4, 011, 47 pages, arXiv:hep-th/0312022.
- Iritani H., Gamma classes and quantum cohomology, in International Congress of Mathematicians, EMS Press, Berlin, 2023, 2552-2574, arXiv:2307.15938.
- Kanno H., Quiver matrix model of ADHM type and BPS state counting in diverse dimensions, PTEP. Prog. Theor. Exp. Phys. 2020 (2020), 11B104, 22 pages, arXiv:2004.05760.
- Kimura T., Pestun V., Super instanton counting and localization, arXiv:1905.01513.
- Losev A., Nekrasov N., Shatashvili S., Freckled instantons in two and four dimensions, Classical Quantum Gravity 17 (2000), 1181-1187, arXiv:hep-th/9911099.
- Maulik D., Nekrasov N., Okounkov A., Pandharipande R., Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), 1263-1285, arXiv:math.AG/0312059.
- Maulik D., Nekrasov N., Okounkov A., Pandharipande R., Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math. 142 (2006), 1286-1304, arXiv:math.AG/0406092.
- Monavari S., Canonical vertex formalism in DT theory of toric Calabi-Yau 4-folds, J. Geom. Phys. 174 (2022), 104466, 15 pages, arXiv:2203.11381.
- Monavari S., Equivariant enumerative geometry and Donaldson-Thomas theory, Ph.D. Thesis, Utrecht University, 2022.
- Nakajima H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416.
- Nakajima H., Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Ser., Vol. 18, American Mathematical Society, Providence, RI, 1999, arXiv:1401.6782.
- Nekrasov N., Lectures on open strings, and noncommutative gauge theories, in Unity from Duality: Gravity, Gauge Theory and Strings (Les Houches, 2001), NATO Adv. Study Inst., EDP Sciences, Les Ulis, 2003, 477-495, arXiv:hep-th/0203109.
- Nekrasov N., A la recherche de la $M$-theorie perdue. $\mathbf{Z}$-theory: chasing $\mathfrak{m}/f$-theory, arXiv:hep-th/0412021.
- Nekrasov N., Localizing gauge theories, in XIVth International Congress on Mathematical Physics, World Scientific Publishing, Hackensack, NJ, 2005, 645-654.
- Nekrasov N., $\mathbf{Z}$-theory: chasing $\mathfrak{m}/f$ theory, C. R. Phys. 6 (2005), 261-269.
- Nekrasov N., Instanton partition functions and M-theory, Jpn. J. Math. 4 (2009), 63-93.
- Nekrasov N., $BPS/CFT$ correspondence: non-perturbative Dyson-Schwinger equations and qq-characters, J. High Energy Phys. 2016 (2016), no. 3, 181, 70 pages, arXiv:1512.05388.
- Nekrasov N., Magnificent four, Adv. Theor. Math. Phys. 24 (2020), 1171-1202, arXiv:1712.08128.
- Nekrasov N., Okounkov A., Membranes and sheaves, Algebr. Geom. 3 (2016), 320-369, arXiv:1404.2323.
- Nekrasov N., Piazzalunga N., Magnificent four with colors, Comm. Math. Phys. 372 (2019), 573-597, arXiv:1808.05206.
- Nekrasov N., Prabhakar N.S., Spiked instantons from intersecting D-branes, Nuclear Phys. B 914 (2017), 257-300, arXiv:1611.03478.
- Nekrasov N., Schwarz A., Instantons on noncommutative $\mathbb{R}^4$, and $(2,0)$ superconformal six-dimensional theory, Comm. Math. Phys. 198 (1998), 689-703, arXiv:hep-th/9802068.
- Oh J., Thomas R.P., Counting sheaves on Calabi-Yau 4-folds, I, Duke Math. J. 172 (2023), 1333-1409, arXiv:2009.05542.
- Piazzalunga N., The one-legged K-theoretic vertex of fourfolds from 3d gauge theory, arXiv:2306.12405.
- Pomoni E., Yan W., Zhang X., Tetrahedron instantons, Comm. Math. Phys. 393 (2022), 781-838, arXiv:2106.11611.
- Seiberg N., Five-dimensional SUSY field theories, non-trivial fixed points and string dynamics, Phys. Lett. B 388 (1996), 753-760, arXiv:hep-th/9608111.
- Seiberg N., A note on background independence in noncommutative gauge theories, Matrix model, and tachyon condensation, J. High Energy Phys. 2000 (2000), no. 9, 003, 16 pages, arXiv:hep-th/0008013.
- Szabo R.J., Tirelli M., Instanton counting and Donaldson-Thomas theory on toric Calabi-Yau four-orbifolds, Adv. Theor. Math. Phys. 27 (2023), 1665-1757, arXiv:2301.13069.
- Witten E., Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 769-796, arXiv:hep-th/9411102.
|
|