|
SIGMA 20 (2024), 096, 4 pages arXiv:2401.00586
https://doi.org/10.3842/SIGMA.2024.096
Scale Invariant Scattering and Bernoulli Numbers
Thomas L. Curtright
Department of Physics, University of Miami, Coral Gables, FL 33124, USA
Received June 07, 2024, in final form October 14, 2024; Published online October 24, 2024
Abstract
Non-relativistic quantum mechanical scattering from an inverse square potential in two spatial dimensions leads to a novel representation of the Bernoulli numbers.
Key words: scale invariance; Bernoulli numbers; Riemann hypothesis.
pdf (310 kb)
tex (9 kb)
References
- Abramowitz M., Stegun I., Handbook of mathematical functions, United States Department of Commerce, National Bureau of Standards, 1970.
- Curtright T., Mean sinc sums and scale invariant scattering, J. Math. Phys. 65 (2024), 012104, 4 pages, arXiv:2212.13884.
- Curtright T., Vignat C., Scale invariant scattering in 2D, Bulg. J. Phys. 51 (2024), 104-108, arXiv:2303.14861.
- Dunne G.V., Schubert C., Bernoulli number identities from quantum field theory and topological string theory, Commun. Number Theory Phys. 7 (2013), 225-249, arXiv:math.NT/0406610.
- Gosper R.W., Ismail M.E.H., Zhang R., On some strange summation formulas, Illinois J. Math. 37 (1993), 240-277.
- Herscovici O., Mansour T., The Miki-type identity for the Apostol-Bernoulli numbers, Ann. Math. Inform. 46 (2016), 97-114.
- Luschny P.H.N., An introduction to the Bernoulli function, arXiv:2009.06743.
- Luschny P.H.N., The Bernoulli manifesto. A survey on the occasion of the 300-th anniversary of the publication of Jacob Bernoulli's Ars Conjectandi, 1713-2013, available at http://luschny.de/math/zeta/The-Bernoulli-Manifesto.html.
- Miki H., A relation between Bernoulli numbers, J. Number Theory 10 (1978), 297-302.
- Riesz M., Sur l'hypothèse de Riemann, Acta Math. 40 (1916), 185-190.
- Weisstein E.W., Bernoulli number, available at https://mathworld.wolfram.com/BernoulliNumber.html.
|
|