Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 095, 20 pages      arXiv:2112.08246      https://doi.org/10.3842/SIGMA.2024.095

Mirrors to Del Pezzo Surfaces and the Classification of $T$-Polygons

Wendelin Lutz
Department of Mathematics and Statistics, Lederle Graduate Research Tower, University of Massachusetts, Amherst, MA 01003-9305, USA

Received May 07, 2024, in final form October 14, 2024; Published online October 22, 2024

Abstract
We give a new geometric proof of the classification of $T$-polygons, a theorem originally due to Kasprzyk, Nill and Prince, using ideas from mirror symmetry. In particular, this gives a completely geometric proof that any two toric $\mathbb{Q}$-Gorenstein degenerations of a smooth del Pezzo $X$ surface are connected via trees of rational curves in the moduli space of $X$.

Key words: $T$-polygons; mirror symmetry; del Pezzo surfaces; mutations; maximally mutable Laurent polynomial.

pdf (501 kb)   tex (54 kb)  

References

  1. Akhtar M., Coates T., Corti A., Heuberger L., Kasprzyk A., Oneto A., Petracci A., Prince T., Tveiten K., Mirror symmetry and the classification of orbifold del Pezzo surfaces, Proc. Amer. Math. Soc. 144 (2016), 513-527, arXiv:1501.05334.
  2. Akhtar M., Kasprzyk A., Singularity content, arXiv:1401.5458.
  3. Alberich-Carramiñana M., Geometry of the plane Cremona maps, Lecture Notes in Math., Vol. 1769, Springer, Berlin, 2002.
  4. Barth W., Peters C., Van de Ven A., Compact complex surfaces, Ergeb. Math. Grenzgeb., Vol. 4, Springer, Berlin, 1984.
  5. Blanc J., Symplectic birational transformations of the plane, Osaka J. Math. 50 (2013), 573-590, arXiv:1012.0706.
  6. Clemens H., Koll'ar J., Mori S., Higher-dimensional complex geometry, Astérisque 166 (1988), 1-144.
  7. Coates T., Kasprzyk A.M., Pitton G., Tveiten K., Maximally mutable Laurent polynomials, Proc. A. 477 (2021), 20210584, 21 pages, arXiv:2107.14253.
  8. Corti A., Cluster varieties and toric specializations of Fano varieties, arXiv:2304.04141.
  9. Corti A., Kaloghiros A.-S., The Sarkisov program for Mori fibred Calabi-Yau pairs, Algebr. Geom. 3 (2016), 370-384, arXiv:1504.00557.
  10. Ducat T., The 3-dimensional Lyness map and a self-mirror log Calabi-Yau 3-fold, Manuscripta Math. 174 (2024), 87-140, arXiv:2105.07843.
  11. Friedman R., On the geometry of anticanonical pairs, arXiv:1502.02560.
  12. Gross M., Hacking P., Keel S., Birational geometry of cluster algebras, Algebr. Geom. 2 (2015), 137-175, arXiv:1309.2573.
  13. Gross M., Hacking P., Keel S., Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes 'Etudes Sci. 122 (2015), 65-168, arXiv:1106.4977.
  14. Gross M., Hacking P., Keel S., Moduli of surfaces with an anti-canonical cycle, Compos. Math. 151 (2015), 265-291, arXiv:1211.6367.
  15. Hacking P., Keating A., Homological mirror symmetry for log Calabi-Yau surfaces, Geom. Topol. 26 (2022), 3747-3833, arXiv:2005.05010.
  16. Ilten N.O., Mutations of Laurent polynomials and flat families with toric fibers, SIGMA 8 (2012), 047, 7 pages, arXiv:1205.4664.
  17. Kasprzyk A., Nill B., Prince T., Minimality and mutation-equivalence of polygons, Forum Math. Sigma 5 (2017), e18, 48 pages, arXiv:1501.05335.
  18. Lutz W., On Gromov-Witten invariants of blowups and the classification of T-polygons, Ph.D. Thesis, University College London, 2022.
  19. Tveiten K., Period integrals and mutation, Trans. Amer. Math. Soc. 370 (2018), 8377-8401, arXiv:1501.05095.

Previous article  Next article  Contents of Volume 20 (2024)