Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 088, 16 pages      arXiv:2112.10182      https://doi.org/10.3842/SIGMA.2024.088

On the Picard Group of the Moduli Space of Curves via $r$-Spin Structures

Danil Gubarevich ab
a) Laboratoire de Mathématiques de Versailles, UFR des Sciences, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des États-Unis, 78035 Versailles, France
b) Faculty of Mathematics, National Research University Higher School of Economics, 6 Usacheva Str., 119048 Moscow, Russia

Received January 05, 2022, in final form August 27, 2024; Published online October 06, 2024

Abstract
In this paper, we obtain explicit expressions for Pandharipande-Pixton-Zvonkine relations in the second rational cohomology of $\overline{\mathcal{M}}_{g,n}$ and comparing the result with Arbarello-Cornalba's theorem we prove Pixton's conjecture in this case.

Key words: moduli space of curves; tautological relations; cohomological field theories.

pdf (465 kb)   tex (22 kb)  

References

  1. Arbarello E., Cornalba M., Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 97-127, arXiv:math.AG/9803001.
  2. Kock J., Frobenius algebras and 2D topological quantum field theories, London Math. Soc. Stud. Texts, Vol. 59, Cambridge University Press, Cambridge, 2004.
  3. Mumford D., Towards an enumerative geometry of the moduli space of curves, in Arithmetic and Geometry, Vol. II, Progr. Math., Vol. 36, Birkhäuser, Boston, MA, 1983, 271-328.
  4. Pandharipande R., Cohomological field theory calculations, in Proceedings of the International Congress of Mathematicians – Rio de Janeiro 2018. Vol. I. Plenary lectures, World Scientific Publishing, Hackensack, NJ, 2018, 869-898, arXiv:1712.02528.
  5. Pandharipande R., Pixton A., Relations in the tautological ring of the moduli space of curves, Pure Appl. Math. Q. 17 (2021), 717-771, arXiv:1301.4561.
  6. Pandharipande R., Pixton A., Zvonkine D., Relations on $\overline{\mathcal M}_{g,n}$ via $3$-spin structures, J. Amer. Math. Soc. 28 (2015), 279-309, arXiv:1303.1043.
  7. Pandharipande R., Pixton A., Zvonkine D., Tautological relations via $r$-spin structures, J. Algebraic Geom. 28 (2019), 439-496, arXiv:1607.00978.
  8. Pixton A., Conjectural relations in the tautological ring of $\overline{M}_{g,n}$, arXiv:1207.1918.
  9. Polishchuk A., Witten's top Chern class on the moduli space of higher spin curves, in Frobenius Manifolds, Aspects Math., Vol. E36, Friedr. Vieweg & Sohn, Wiesbaden, 2004, 253-264, arXiv:math.AG/0208112.
  10. Polishchuk A., Vaintrob A., Algebraic construction of Witten's top Chern class, in Advances in Algebraic Geometry Motivated by Physics (Lowell, MA, 2000), Contemp. Math., Vol. 276, American Mathematical Society, Providence, RI, 2001, 229-249, arXiv:math.AG/0011032.
  11. Teleman C., The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), 525-588, arXiv:0712.0160.
  12. Witten E., Algebraic geometry associated with matrix models of two-dimensional gravity, in Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 235-269.
  13. Zvonkine D., An introduction to moduli spaces of curves and their intersection theory, in Handbook of Teichmüller Theory. Vol. III, IRMA Lect. Math. Theor. Phys., Vol. 17, European Mathematical Society (EMS), Zürich, 2012, 667-716.

Previous article  Next article  Contents of Volume 20 (2024)