|
SIGMA 20 (2024), 086, 37 pages arXiv:2401.14099
https://doi.org/10.3842/SIGMA.2024.086
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne
On a Transformation of Triple $q$-Series and Rogers-Hecke Type Series
Zhi-Guo Liu
School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education) & Shanghai KeyLaboratory of PMMP, East China Normal University, Shanghai 200241, P.R. China
Received January 26, 2024, in final form September 15, 2024; Published online October 04, 2024
Abstract
Using the method of the $q$-exponential differential operator, we give an extension of the Sears $_4\phi_3$ transformation formula. Based on this extended formula and a $q$-series expansion formula for an analytic function around the origin, we present a transformation formula for triple $q$-series, which includes several interesting special cases, especially a double $q$-series summation formula. Some applications of this transformation formula to Rogers-Hecke type series are discussed. More than 100 Rogers-Hecke type identities including Andrews' identities for the sums of three squares and the sums of three triangular numbers are obtained.
Key words: $q$-partial differential equation; double $q$-series summation; triple $q$-hypergeometric series; $q$-exponential differential operator; Rogers-Hecke type series.
pdf (548 kb)
tex (30 kb)
References
- Andrews G.E., Enumerative proofs of certain $q$-identities, Glasgow Math. J. 8 (1967), 33-40.
- Andrews G.E., Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441-484.
- Andrews G.E., The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc. 293 (1986), 113-134.
- Andrews G.E., $q$-orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions, Proc. Steklov Inst. Math. 276 (2012), 21-32.
- Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia Math. Appl., Vol. 71, Cambridge University Press, Cambridge, 1999.
- Andrews G.E., Berndt B.C., Ramanujan's lost notebook. Part I, Springer, New York, 2005.
- Andrews G.E., Dyson F.J., Hickerson D., Partitions and indefinite quadratic forms, Invent. Math. 91 (1988), 391-407.
- Aslan H., Ismail M.E.H., A $q$-translation approach to Liu's calculus, Ann. Comb. 23 (2019), 465-488.
- Chen D., Wang L., Representations of mock theta functions, Adv. Math. 365 (2020), 107037, 72 pages, arXiv:1811.07686.
- Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
- Jackson F., On $q$-functions and a certain difference operator, Trans. Roy. Soc. Edin. 46 (1909), 253-281.
- Krammer D., Sums of three squares and $q$-series, J. Number Theory 44 (1993), 244-254.
- Liu Z.-G., An expansion formula for $q$-series and applications, Ramanujan J. 6 (2002), 429-447.
- Liu Z.-G., Some operator identities and $q$-series transformation formulas, Discrete Math. 265 (2003), 119-139.
- Liu Z.-G., An extension of the quintuple product identity and its applications, Pacific J. Math. 246 (2010), 345-390.
- Liu Z.-G., Two $q$-difference equations and $q$-operator identities, J. Difference Equ. Appl. 16 (2010), 1293-1307.
- Liu Z.-G., An extension of the non-terminating ${}_6\phi_5$ summation and the Askey-Wilson polynomials, J. Difference Equ. Appl. 17 (2011), 1401-1411.
- Liu Z.-G., A $q$-series expansion formula and the Askey-Wilson polynomials, Ramanujan J. 30 (2013), 193-210.
- Liu Z.-G., On the $q$-derivative and $q$-series expansions, Int. J. Number Theory 9 (2013), 2069-2089, arXiv:1805.04618.
- Liu Z.-G., On the $q$-partial differential equations and $q$-series, in The Legacy of Srinivasa Ramanujan, Ramanujan Math. Soc. Lect. Notes Ser., Vol. 20, Ramanujan Mathematical Society, Mysore, 2013, 213-250, arXiv:1805.02132.
- Liu Z.-G., A $q$-extension of a partial differential equation and the Hahn polynomials, Ramanujan J. 38 (2015), 481-501, arXiv:1805.07292.
- Liu Z.-G., On a system of $q$-partial differential equations with applications to $q$-series, in Analytic Number Theory, Modular Forms and $q$-hypergeometric Series, Springer Proc. Math. Stat., Vol. 221, Springer, Cham, 2017, 445-461, arXiv:1709.06784.
- Liu Z.-G., Askey-Wilson polynomials and a double $q$-series transformation formula with twelve parameters, Proc. Amer. Math. Soc. 147 (2019), 2349-2363, arXiv:1810.02918.
- Liu Z.-G., A universal identity for theta functions of degree eight and applications, Hardy-Ramanujan J. 43 (2020), 129-172, arXiv:2104.14705.
- Liu Z.-G., On the Askey-Wilson polynomials and a $q$-beta integral, Proc. Amer. Math. Soc. 149 (2021), 4639-4648.
- Liu Z.-G., A multiple $q$-exponential differential operational identity, Acta Math. Sci. Ser. B (Engl. Ed.) 43 (2023), 2449-2470.
- Liu Z.-G., A multiple $q$-translation formula and its implications, Acta Math. Sin. (Engl. Ser.) 39 (2023), 2338-2363.
- Schendel L., Zur Theorie der Functionen, J. Reine Angew. Math. 84 (1878), 80-84.
- Shanks D., A short proof of an identity of Euler, Proc. Amer. Math. Soc. 2 (1951), 747-749.
- Shanks D., Two theorems of Gauss, Pacific J. Math. 8 (1958), 609-612.
- Wang C., Chern S., Some $q$-transformation formulas and Hecke type identities, Int. J. Number Theory 15 (2019), 1349-1367.
- Wang L., Yee A.J., Some Hecke-Rogers type identities, Adv. Math. 349 (2019), 733-748.
|
|