Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 083, 22 pages      arXiv:2309.09341      https://doi.org/10.3842/SIGMA.2024.083

Kernel Function, $q$-Integral Transformation and $q$-Heun Equations

Kouichi Takemura
Department of Mathematics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

Received February 14, 2024, in final form September 12, 2024; Published online September 19, 2024

Abstract
We find kernel functions of the $q$-Heun equation and its variants. We apply them to obtain $q$-integral transformations of solutions to the $q$-Heun equation and its variants. We discuss special solutions of the $q$-Heun equation from the perspective of the $q$-integral transformation.

Key words: kernel function; Jackson integral; Heun equation; $q$-Heun equation; Ruijsenaars system.

pdf (439 kb)   tex (22 kb)  

References

  1. Arai Y., Takemura K., On $q$-middle convolution and $q$-hypergeometric equations, SIGMA 19 (2023), 037, 40 pages, arXiv:2209.02227.
  2. Atai F., Noumi M., Eigenfunctions of the van Diejen model generated by gauge and integral transformations, Adv. Math. 412 (2023), 108816, 60 pages, arXiv:2203.00498.
  3. Fujii T., Nobukawa T., Hypergeometric solutions for variants of the $q$-hypergeometric equation, arXiv:2207.12777.
  4. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
  5. Hahn W., On linear geometric difference equations with accessory parameters, Funkcial. Ekvac. 14 (1971), 73-78.
  6. Hatano N., Matsunawa R., Sato T., Takemura K., Variants of $q$-hypergeometric equation, Funkcial. Ekvac. 65 (2022), 159-190, arXiv:1910.12560.
  7. Kazakov A.Ya., Integral symmetries, integral invariants, and monodromy matrices for ordinary differential equations, Theoret. and Math. Phys. 116 (1998), 991-1000.
  8. Kazakov A.Ya., Slavyanov S.Yu., Integral relations for special functions of the Heun class, Theoret. and Math. Phys. 107 (1996), 733-739.
  9. Kojima K., Sato T., Takemura K., Polynomial solutions of $q$-Heun equation and ultradiscrete limit, J. Difference Equ. Appl. 25 (2019), 647-664, arXiv:1809.01428.
  10. Komori Y., Noumi M., Shiraishi J., Kernel functions for difference operators of Ruijsenaars type and their applications, SIGMA 5 (2009), 054, 40 pages, arXiv:0812.0279.
  11. Langmann E., Source identity and kernel functions for elliptic Calogero-Sutherland type systems, Lett. Math. Phys. 94 (2010), 63-75, arXiv:1003.0857.
  12. Langmann E., Takemura K., Source identity and kernel functions for Inozemtsev-type systems, J. Math. Phys. 53 (2012), 082105, 19 pages, arXiv:1202.3544.
  13. Ruijsenaars S.N.M., Integrable $BC_N$ analytic difference operators: hidden parameter symmetries and eigenfunctions, in New Trends in Integrability and Partial Solvability, NATO Sci. Ser. II Math. Phys. Chem., Vol. 132, Kluwer, Dordrecht, 2004, 217-261.
  14. Ruijsenaars S.N.M., Zero-eigenvalue eigenfunctions for differences of elliptic relativistic Calogero-Moser Hamiltonians, Theoret. and Math. Phys. 146 (2006), 25-33.
  15. Ruijsenaars S.N.M., Hilbert-Schmidt operators vs. integrable systems of elliptic Calogero-Moser type. I. The eigenfunction identities, Comm. Math. Phys. 286 (2009), 629-657.
  16. Sakai H., Yamaguchi M., Spectral types of linear $q$-difference equations and $q$-analog of middle convolution, Int. Math. Res. Not. 2017 (2017), 1975-2013, arXiv:1410.3674.
  17. Sasaki S., Takagi S., Takemura K., $q$-middle convolution and $q$-Painlevé equation, SIGMA 18 (2022), 056, 21 pages, arXiv:2201.03960.
  18. Sasaki S., Takagi S., Takemura K., $q$-Heun equation and initial-value space of $q$-Painlevé equation, in Recent Trends in Formal and Analytic Solutions of Diff. Equations, Contemp. Math., Vol. 782, American Mathematical Society, Providence, RI, 2023, 119-142, arXiv:2110.13860.
  19. Takemura K., Integral representation of solutions to Fuchsian system and Heun's equation, J. Math. Anal. Appl. 342 (2008), 52-69, arXiv:0705.3358.
  20. Takemura K., Middle convolution and Heun's equation, SIGMA 5 (2009), 040, 22 pages, arXiv:0810.3112.
  21. Takemura K., Heun's differential equation, in Selected Papers on Analysis and Differential Equations, 2nd ed., Amer. Math. Soc. Transl., Vol. 230,American Mathematical Society, Providence, RI, 2010, 45-68.
  22. Takemura K., Degenerations of Ruijsenaars-van Diejen operator and $q$-Painlevé equations, J. Integrable Syst. 2 (2017), xyx008, 27 pages, arXiv:1608.07265.
  23. Takemura K., Integral transformation of Heun's equation and some applications, J. Math. Soc. Japan 69 (2017), 849-891, arXiv:1008.4007.
  24. Takemura K., On $q$-deformations of the Heun equation, SIGMA 14 (2018), 061, 16 pages, arXiv:1712.09564.
  25. van Diejen J.F., Integrability of difference Calogero-Moser systems, J. Math. Phys. 35 (1994), 2983-3004.

Previous article  Next article  Contents of Volume 20 (2024)