Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 080, 26 pages      arXiv:2401.15601      https://doi.org/10.3842/SIGMA.2024.080

On $F$-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula

Changjian Fu, Liangang Peng and Huihui Ye
Department of Mathematics, Sichuan University, Chengdu 610064, P.R. China

Received March 12, 2024, in final form August 25, 2024; Published online September 03, 2024

Abstract
We show the polynomial property of $F$-polynomials for generalized quantum cluster algebras and obtain the associated separation formulas under a mild condition. Along the way, we obtain Gupta's formulas of $F$-polynomials for generalized quantum cluster algebras. These formulas specialize to Gupta's formulas for quantum cluster algebras and cluster algebras respectively. Finally, a generalization of Gupta's formula has also been discussed in the setting of generalized cluster algebras.

Key words: $F$-polynomial; separation formula; Fock-Goncharov decomposition; generalized quantum cluster algebra; generalized cluster algebra.

pdf (524 kb)   tex (29 kb)  

References

  1. Bai L., Chen X., Ding M., Xu F., A quantum analog of generalized cluster algebras, Algebr. Represent. Theory 21 (2018), 1203-1217, arXiv:1610.09803.
  2. Bai L., Chen X., Ding M., Xu F., Generalized quantum cluster algebras: the Laurent phenomenon and upper bounds, J. Algebra 619 (2023), 298-322, arXiv:2203.06928.
  3. Berenstein A., Zelevinsky A., Quantum cluster algebras, Adv. Math. 195 (2005), 405-455, arXiv:math.QA/0404446.
  4. Chekhov L., Shapiro M., Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables, Int. Math. Res. Not. 2014 (2014), 2746-2772, arXiv:1111.3963.
  5. Davison B., Positivity for quantum cluster algebras, Ann. of Math. 187 (2018), 157-219, arXiv:1601.07918.
  6. Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009), 865-930, arXiv:math.AG/0311245.
  7. Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, arXiv:math.RT/0104151.
  8. Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, arXiv:math.RA/0602259.
  9. Gleitz A.-S., Generalised cluster algebras and $q$-characters at roots of unity, in Proceedings of FPSAC 2015, Discrete Math. Theor. Comput. Sci. Proc., Discrete Mathematics & Theoretical Computer Science (DMTCS), Nancy, 2015, 357-368.
  10. Gross M., Hacking P., Keel S., Kontsevich M., Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), 497-608, arXiv:1411.1394.
  11. Gupta M., A formula for $F$-polynomials in terms of $c$-vectors and stabilization of $F$-polynomials, arXiv:1812.01910.
  12. Iwaki K., Nakanishi T., Exact WKB analysis and cluster algebras II: Simple poles, orbifold points, and generalized cluster algebras, Int. Math. Res. Not. 2016 (2016), 4375-4417, arXiv:1409.4641.
  13. Keller B., Cluster algebras and derived categories, in Derived Categories in Algebraic Geometry, EMS Ser. Congr. Rep., European Mathematical Society (EMS), Zürich, 2013, 123-183, arXiv:1202.4161.
  14. Keller B., Demonet L., A survey on maximal green sequences, in Representation Theory and Beyond, Contemp. Math., Vol. 758, American Mathematical Society, Providence, RI, 2020, 267-286, arXiv:1904.09247.
  15. Labardini-Fragoso D., Mou L., Gentle algebras arising from surfaces with orbifold points of order 3, Part I: scattering diagrams, Algebr. Represent. Theory 27 (2024), 679-722, arXiv:2203.11563.
  16. Labardini-Fragoso D., Velasco D., On a family of Caldero-Chapoton algebras that have the Laurent phenomenon, J. Algebra 520 (2019), 90-135, arXiv:1704.07921.
  17. Lin F., Musiker G., Nakanishi T., Two formulas for $F$-polynomials, Int. Math. Res. Not. 2024 (2024), 613-634, arXiv:2112.11839.
  18. Nakanishi T., Quantum generalized cluster algebras and quantum dilogarithms of higher degrees, Theoret. and Math. Phys. 185 (2015), 1759-1768, arXiv:1410.0584.
  19. Nakanishi T., Structure of seeds in generalized cluster algebras, Pacific J. Math. 277 (2015), 201-217, arXiv:1409.5967.
  20. Nakanishi T., Cluster algebras and scattering diagrams, MSJ Memoirs, Vol. 41, Mathematical Society of Japan, Tokyo, 2023, arXiv:2201.11371.
  21. Tran T., $F$-polynomials in quantum cluster algebras, Algebr. Represent. Theory 14 (2011), 1025-1061, arXiv:0904.3291.

Previous article  Next article  Contents of Volume 20 (2024)