Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 069, 22 pages      arXiv:2112.04825      https://doi.org/10.3842/SIGMA.2024.069
Contribution to the Special Issue on Global Analysis on Manifolds in honor of Christian Bär for his 60th birthday

Torsion Obstructions to Positive Scalar Curvature

Misha Gromov ab and Bernhard Hanke c
a) Institut des Hautes Études Scientifiques, 91893 Bures-sur-Yvette, France
b) Courant Institute of Mathematical Sciences, New York University, New York, NY 10012-1185, USA
c) Institut für Mathematik, University of Augsburg, 86135 Augsburg, Germany

Received November 07, 2023, in final form July 17, 2024; Published online July 30, 2024

Abstract
We study obstructions to the existence of Riemannian metrics of positive scalar curvature on closed smooth manifolds arising from torsion classes in the integral homology of their fundamental groups. As an application, we construct new examples of manifolds which do not admit positive scalar curvature metrics, but whose Cartesian products admit such metrics.

Key words: positive scalar curvature; toral manifold; enlargeability; $\mu$-bubble; group homology; Riemannian foliation; band width inequality.

pdf (556 kb)   tex (34 kb)  

References

  1. Adem A., Milgram R.J., Cohomology of finite groups, 2nd ed., Grundlehren Math. Wiss., Vol. 309, Springer, Berlin, 2004.
  2. Baas N.A., On bordism theory of manifolds with singularities, Math. Scand. 33 (1973), 279-302.
  3. Brunnbauer M., Hanke B., Large and small group homology, J. Topol. 3 (2010), 463-486, arXiv:0902.0869.
  4. Cartan H., Eilenberg S., Homological algebra, Princeton University Press, Princeton, NJ, 1956.
  5. Cecchini S., A long neck principle for Riemannian spin manifolds with positive scalar curvature, Geom. Funct. Anal. 30 (2020), 1183-1223, arXiv:2002.07131.
  6. Chodosh O., Li C., Liokumovich Y., Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions, Geom. Topol. 27 (2023), 1635-1655, arXiv:2105.07306.
  7. Chodosh O., Mantoulidis C., Schulze F., Improved generic regularity of codimension-1 minimizing integral currents, Ars Inven. Anal. (2024), 3, 16 pages, arXiv:2306.13191.
  8. Conner P.E., Floyd E.E., Differentiable periodic maps, Ergeb. Math. Grenzgeb., Vol. 33, Springer, Berlin, 1964.
  9. Führing S., A smooth variation of Baas-Sullivan theory and positive scalar curvature, Math. Z. 274 (2013), 1029-1046, arXiv:1203.4370.
  10. Führing S., Bordism and projective space bundles, Münster J. Math. 15 (2022), 355-388, arXiv:2006.15394.
  11. Ghys E., de la Harpe P. (Editors), Sur les groupes hyperboliques d'après Mikhael Gromov, Progr. Math., Vol. 83, Birkhäuser, Boston, MA, 1990.
  12. Gromov M., Positive curvature, macroscopic dimension, spectral gaps and higher signatures, in Functional Analysis on the Eve of the 21st Century, Vol. II (New Brunswick, NJ, 1993), Progr. Math., Vol. 132, Birkhäuser, Boston, MA, 1996, 1-213.
  13. Gromov M., Metric inequalities with scalar curvature, Geom. Funct. Anal. 28 (2018), 645-726, arXiv:1710.04655.
  14. Gromov M., Four lectures on scalar curvature, in Perspectives in Scalar Curvature. Vol. 1, World Scientific Publishing, Hackensack, NJ, 2023, 1-514, arXiv:1908.10612.
  15. Gromov M., Lawson Jr. H.B., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980), 423-434.
  16. Gromov M., Lawson Jr. H.B., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. (1983), 83-196.
  17. Guo H., Xie Z., Yu G., Quantitative K-theory, positive scalar curvature, and bandwidth, in Perspectives in scalar curvature. Vol. 2, World Scientific Publishing, Hackensack, NJ, 2023, 763-798, arXiv:2010.01749.
  18. Hanke B., Positive scalar curvature on manifolds with odd order abelian fundamental groups, Geom. Topol. 25 (2021), 497-546, arXiv:1908.00944.
  19. Hitchin N., Harmonic spinors, Adv. Math. 14 (1974), 1-55.
  20. Joachim M., Toral classes and the Gromov-Lawson-Rosenberg conjecture for elementary abelian 2-groups, Arch. Math. (Basel) 83 (2004), 461-466.
  21. Kahn J., Markovic V., Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012), 1127-1190, arXiv:0910.5501.
  22. Lohkamp J., Minimal smoothings of area minimizing cones, arXiv:1810.03157.
  23. Margolis H.R., Eilenberg-Mac Lane spectra, Proc. Amer. Math. Soc. 43 (1974), 409-415.
  24. Matthey M., Oyono-Oyono H., Pitsch W., Homotopy invariance of higher signatures and 3-manifold groups, Bull. Soc. Math. France 136 (2008), 1-25, arXiv:math.AT/0412363.
  25. Milnor J., A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7.
  26. Morgan F., Pansu P., A list of open problems in differential geometry, São Paulo J. Math. Sci. 15 (2021), 305-321.
  27. Räde D., Scalar and mean curvature comparison via $\mu $-bubbles, Calc. Var. Partial Differential Equations 62 (2023), 187, 39 pages, arXiv:2104.10120.
  28. Rosenberg J., $C^\ast$-algebras, positive scalar curvature, and the Novikov conjecture. III, Topology 25 (1986), 319-336.
  29. Rosenberg J., Stolz S., A ''stable'' version of the Gromov-Lawson conjecture, in The Čech Centennial, Contemp. Math., Vol. 181, American Mathematical Society, Providence, RI, 1995, 405-418, arXiv:dg-ga/9407002.
  30. Rosenberg J., Stolz S., Metrics of positive scalar curvature and connections with surgery, in Surveys on Surgery Theory, Vol. 2, Ann. of Math. Stud., Vol. 149, Princeton University Press, Princeton, NJ, 2001, 353-386.
  31. Schick T., A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology 37 (1998), 1165-1168, arXiv:math/0403063.
  32. Schick T., Zenobi V.F., Positive scalar curvature due to the cokernel of the classifying map, SIGMA 16 (2020), 129, 12 pages, arXiv:2006.15965.
  33. Schoen R., Yau S.-T., Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. 110 (1979), 127-142.
  34. Schoen R., Yau S.-T., On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), 159-183.
  35. Schoen R., Yau S.-T., Positive scalar curvature and minimal hypersurface singularities, in Surveys in Differential Geometry, Surv. Differ. Geom., Vol. 24, Int. Press, Boston, MA, 2022, 441-480, arXiv:1704.05490.
  36. Smale N., Generic regularity of homologically area minimizing hypersurfaces in eight-dimensional manifolds, Comm. Anal. Geom. 1 (1993), 217-228.
  37. Stolz S., Simply connected manifolds of positive scalar curvature, Ann. of Math. 136 (1992), 511-540.
  38. Stolz S., Splitting certain ${\rm MSpin}$-module spectra, Topology 33 (1994), 159-180.
  39. Su G., Wang X., Zhang W., Nonnegative scalar curvature and area decreasing maps on complete foliated manifolds, J. Reine Angew. Math. 790 (2022), 85-113, arXiv:2104.03472.
  40. Wall C.T.C., Determination of the cobordism ring, Ann. of Math. 72 (1960), 292-311.
  41. Zeidler R., Width, largeness and index theory, SIGMA 16 (2020), 127, 15 pages, arXiv:2008.13754.
  42. Zeidler R., Band width estimates via the Dirac operator, J. Differential Geom. 122 (2022), 155-183, arXiv:1905.08520.

Previous article  Next article  Contents of Volume 20 (2024)