Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 067, 21 pages      arXiv:2312.01620      https://doi.org/10.3842/SIGMA.2024.067

The Laplace-Beltrami Operator on the Surface of the Ellipsoid

Hans Volkmer
Department of Mathematical Sciences, University of Wisconsin-Milwaukee, USA

Received December 04, 2023, in final form July 10, 2024; Published online July 25, 2024

Abstract
The Laplace-Beltrami operator on (the surface of) a triaxial ellipsoid admits a sequence of real eigenvalues diverging to plus infinity. By introducing ellipsoidal coordinates, this eigenvalue problem for a partial differential operator is reduced to a two-parameter regular Sturm-Liouville problem involving ordinary differential operators. This two-parameter eigenvalue problem has two families of eigencurves whose intersection points determine the eigenvalues of the Laplace-Beltrami operator. Eigenvalues are approximated numerically through eigenvalues of generalized matrix eigenvalue problems. Ellipsoids close to spheres are studied employing Lamé polynomials.

Key words: Laplace-Beltrami operator; triaxial ellipsoid; two-parameter Sturm-Liouville problem; generalized matrix eigenvalue problem; eigencurves.

pdf (495 kb)   tex (81 kb)  

References

  1. Arscott F., Periodic differential equations: an introduction to Mathieu, Lamé, and allied functions, Internat. Ser. Monogr. Pure Appl. Math., Vol. 66, Macmillan, New York, 1964.
  2. Atkinson F., Mingarelli A.B., Multiparameter eigenvalue problems. Sturm-Liouville theory, CRC Press, Boca Raton, FL, 2011.
  3. Bailey P., Everett W., Zettl A., Algorithm 810: The SLEIGN2 Sturm-Liouville Code, ACM Trans. Math. Software 27 (2001), 143-192.
  4. Binding P., Volkmer H., Eigencurves for two-parameter Sturm-Liouville equations, SIAM Rev. 38 (1996), 27-48.
  5. Borisov D., Freitas P., On the spectrum of deformations of compact double-sided flat hypersurfaces, Anal. PDE 6 (2013), 1051-1088, arXiv:1210.4088.
  6. Dassios G., Ellipsoidal harmonics: Theory and applications, Encyclopedia Math. Appl., Vol. 146, Cambridge University Press, Cambridge, 2012.
  7. Eller M., Karabash I.M., M-dissipative boundary conditions and boundary tuples for Maxwell operators, J. Differential Equations 325 (2022), 82-118, arXiv:2110.04586.
  8. Erdélyi A., Higher transcendental functions, Vol. III, McGraw-Hill, New York, 1955.
  9. Eswarathasan S., Kolokolnikov T., Laplace-Beltrami spectrum of ellipsoids that are close to spheres and analytic perturbation theory, IMA J. Appl. Math. 87 (2022), 20-49, arXiv:2102.03579.
  10. Gimperlein H., Goffeng M., Louca N., Semiclassical analysis of a nonlocal boundary value problem related to magnitude, J. Anal. Math. to appear, arXiv:2201.11357.
  11. Heine E., Handbuch der Kugelfunctionen, Vol. 1, G. Reimer Verlag, Berlin, 1878.
  12. Hobson E.W., The theory of spherical and ellipsoidal harmonics, Chelsea Publishing Co., New York, 1955.
  13. Ince E.L., Further investigations into the periodic Lamé functions, Proc. Roy. Soc. Edinburgh 60 (1940), 83-99.
  14. Jost J., Riemannian geometry and geometric analysis, 4th ed., Universitext, Springer, Berlin, 2005.
  15. Kurula M., Zwart H., Linear wave systems on $n$-D spatial domains, Internat. J. Control 88 (2015), 1063-1077, arXiv:1405.1840.
  16. Lamé G., Mémoire sur l'équilibre des températures dans un ellipsoïde à trois axes inégaux, J. Math. Pures Appl. 4 (1839), 126-163.
  17. Mangasuli A.G., Tiwari A., Laplace eigenvalues of ellipsoids obtained as analytic perturbations of the unit sphere, Ann. Global Anal. Geom. 63 (2023), 26, 10 pages.
  18. Mathieu E., Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique, J. Math. Pures Appl. 13 (1868), 137-208.
  19. Meixner J., Schäfke F.W., Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf physikalische und technische Probleme, Grundlehren Math. Wiss., Vol. 71, Springer, Berlin, 1954.
  20. Olver F.W.J., Asymptotics and special functions, A K Peters, New York, 1997.
  21. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010.
  22. Volkmer H., Multiparameter eigenvalue problems and expansion theorems, Lecture Notes in Math., Vol. 1356, Springer, Berlin, 1988.
  23. Volkmer H., Eigenvalues of the Laplace-Beltrami operator on a prolate spheroid, J. Differential Equations 373 (2023), 411-445.
  24. Walter W., Ordinary differential equations, Grad. Texts in Math., Vol. 182, Springer, New York, 1998.
  25. Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1996.

Previous article  Next article  Contents of Volume 20 (2024)