|
SIGMA 20 (2024), 067, 21 pages arXiv:2312.01620
https://doi.org/10.3842/SIGMA.2024.067
The Laplace-Beltrami Operator on the Surface of the Ellipsoid
Hans Volkmer
Department of Mathematical Sciences, University of Wisconsin-Milwaukee, USA
Received December 04, 2023, in final form July 10, 2024; Published online July 25, 2024
Abstract
The Laplace-Beltrami operator on (the surface of) a triaxial ellipsoid admits a sequence of real eigenvalues diverging to plus infinity. By introducing ellipsoidal coordinates, this eigenvalue problem for a partial differential operator is reduced to a two-parameter regular Sturm-Liouville problem involving ordinary differential operators. This two-parameter eigenvalue problem has two families of eigencurves whose intersection points determine the eigenvalues of the Laplace-Beltrami operator. Eigenvalues are approximated numerically through eigenvalues of generalized matrix eigenvalue problems. Ellipsoids close to spheres are studied employing Lamé polynomials.
Key words: Laplace-Beltrami operator; triaxial ellipsoid; two-parameter Sturm-Liouville problem; generalized matrix eigenvalue problem; eigencurves.
pdf (495 kb)
tex (81 kb)
References
- Arscott F., Periodic differential equations: an introduction to Mathieu, Lamé, and allied functions, Internat. Ser. Monogr. Pure Appl. Math., Vol. 66, Macmillan, New York, 1964.
- Atkinson F., Mingarelli A.B., Multiparameter eigenvalue problems. Sturm-Liouville theory, CRC Press, Boca Raton, FL, 2011.
- Bailey P., Everett W., Zettl A., Algorithm 810: The SLEIGN2 Sturm-Liouville Code, ACM Trans. Math. Software 27 (2001), 143-192.
- Binding P., Volkmer H., Eigencurves for two-parameter Sturm-Liouville equations, SIAM Rev. 38 (1996), 27-48.
- Borisov D., Freitas P., On the spectrum of deformations of compact double-sided flat hypersurfaces, Anal. PDE 6 (2013), 1051-1088, arXiv:1210.4088.
- Dassios G., Ellipsoidal harmonics: Theory and applications, Encyclopedia Math. Appl., Vol. 146, Cambridge University Press, Cambridge, 2012.
- Eller M., Karabash I.M., M-dissipative boundary conditions and boundary tuples for Maxwell operators, J. Differential Equations 325 (2022), 82-118, arXiv:2110.04586.
- Erdélyi A., Higher transcendental functions, Vol. III, McGraw-Hill, New York, 1955.
- Eswarathasan S., Kolokolnikov T., Laplace-Beltrami spectrum of ellipsoids that are close to spheres and analytic perturbation theory, IMA J. Appl. Math. 87 (2022), 20-49, arXiv:2102.03579.
- Gimperlein H., Goffeng M., Louca N., Semiclassical analysis of a nonlocal boundary value problem related to magnitude, J. Anal. Math. to appear, arXiv:2201.11357.
- Heine E., Handbuch der Kugelfunctionen, Vol. 1, G. Reimer Verlag, Berlin, 1878.
- Hobson E.W., The theory of spherical and ellipsoidal harmonics, Chelsea Publishing Co., New York, 1955.
- Ince E.L., Further investigations into the periodic Lamé functions, Proc. Roy. Soc. Edinburgh 60 (1940), 83-99.
- Jost J., Riemannian geometry and geometric analysis, 4th ed., Universitext, Springer, Berlin, 2005.
- Kurula M., Zwart H., Linear wave systems on $n$-D spatial domains, Internat. J. Control 88 (2015), 1063-1077, arXiv:1405.1840.
- Lamé G., Mémoire sur l'équilibre des températures dans un ellipsoïde à trois axes inégaux, J. Math. Pures Appl. 4 (1839), 126-163.
- Mangasuli A.G., Tiwari A., Laplace eigenvalues of ellipsoids obtained as analytic perturbations of the unit sphere, Ann. Global Anal. Geom. 63 (2023), 26, 10 pages.
- Mathieu E., Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique, J. Math. Pures Appl. 13 (1868), 137-208.
- Meixner J., Schäfke F.W., Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf physikalische und technische Probleme, Grundlehren Math. Wiss., Vol. 71, Springer, Berlin, 1954.
- Olver F.W.J., Asymptotics and special functions, A K Peters, New York, 1997.
- Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010.
- Volkmer H., Multiparameter eigenvalue problems and expansion theorems, Lecture Notes in Math., Vol. 1356, Springer, Berlin, 1988.
- Volkmer H., Eigenvalues of the Laplace-Beltrami operator on a prolate spheroid, J. Differential Equations 373 (2023), 411-445.
- Walter W., Ordinary differential equations, Grad. Texts in Math., Vol. 182, Springer, New York, 1998.
- Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1996.
|
|