Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 065, 52 pages      arXiv:1904.04076      https://doi.org/10.3842/SIGMA.2024.065

Adiabatic Limit, Theta Function, and Geometric Quantization

Takahiko Yoshida
Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan

Received March 20, 2023, in final form July 06, 2024; Published online July 19, 2024

Abstract
Let $\pi\colon (M,\omega)\to B$ be a non-singular Lagrangian torus fibration on a complete base $B$ with prequantum line bundle $\bigl(L,\nabla^L\bigr)\to (M,\omega)$. Compactness on $M$ is not assumed. For a positive integer $N$ and a compatible almost complex structure $J$ on $(M,\omega)$ invariant along the fiber of $\pi$, let $D$ be the associated Spin${}^c$ Dirac operator with coefficients in $L^{\otimes N}$. First, in the case where $J$ is integrable, under certain technical condition on $J$, we give a complete orthogonal system $\{ \vartheta_b\}_{b\in B_{\rm BS}}$ of the space of holomorphic $L^2$-sections of $L^{\otimes N}$ indexed by the Bohr-Sommerfeld points $B_{\rm BS}$ such that each $\vartheta_b$ converges to a delta-function section supported on the corresponding Bohr-Sommerfeld fiber $\pi^{-1}(b)$ by the adiabatic(-type) limit. We also explain the relation of $\vartheta_b$ with Jacobi's theta functions when $(M,\omega)$ is $T^{2n}$. Second, in the case where $J$ is not integrable, we give an orthogonal family $\big\{ {\tilde \vartheta}_b\big\}_{b\in B_{\rm BS}}$ of $L^2$-sections of $L^{\otimes N}$ indexed by $B_{\rm BS}$ which has the same property as above, and show that each $D{\tilde \vartheta}_b$ converges to $0$ by the adiabatic(-type) limit with respect to the $L^2$-norm.

Key words: adiabatic limit; theta function; Lagrangian fibration; geometric quantization.

pdf (805 kb)   tex (51 kb)  

References

  1. Andersen J.E., Geometric quantization of symplectic manifolds with respect to reducible non-negative polarizations, Comm. Math. Phys. 183 (1997), 401-421.
  2. Arnold V.I., Mathematical methods of classical mechanics, 2nd ed., Grad. Texts Math., Vol. 60, Springer, New York, 1989.
  3. Baier T., Florentino C., Mourão J.M., Nunes J.P., Toric Kähler metrics seen from infinity, quantization and compact tropical amoebas, J. Differential Geom. 89 (2011), 411-454, arXiv:0806.0606.
  4. Baier T., Mourão J.M., Nunes J.P., Quantization of abelian varieties: distributional sections and the transition from Kähler to real polarizations, J. Funct. Anal. 258 (2010), 3388-3412, arXiv:0907.5324.
  5. Bieberbach L., Über die Bewegungsgruppen der Euklidischen Räume, Math. Ann. 70 (1911), 297-336.
  6. Bieberbach L., Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich, Math. Ann. 72 (1912), 400-412.
  7. Borthwick D., Uribe A., Almost complex structures and geometric quantization, Math. Res. Lett. 3 (1996), 845-861, arXiv:dg-ga/9608006.
  8. Bott R., Tu L.W., Differential forms in algebraic topology, Grad. Texts Math., Vol. 82, Springer, New York, 1982.
  9. Danilov V.I., The geometry of toric varieties, Russian Math. Surveys 33 (1978), 97-154.
  10. Duistermaat J.J., On global action-angle coordinates, Comm. Pure Appl. Math. 33 (1980), 687-706.
  11. Duistermaat J.J., The heat kernel Lefschetz fixed point formula for the spin-$c$ Dirac operator, Progr. Nonlinear Differential Equations Appl., Vol. 18, Birkhäuser, Boston, MA, 1996.
  12. Egorov D.V., Theta functions on $T^2$-bundles over $T^2$ with the zero Euler class, Sib. Math. J. 50 (2009), 647-657, arXiv:1110.2322.
  13. Egorov D.V., Theta functions on the Kodaira-Thurston manifold, Sib. Math. J. 50 (2009), 253-260, arXiv:0902.2843.
  14. Fujita H., Furuta M., Yoshida T., Torus fibrations and localization of index I, J. Math. Sci. Univ. Tokyo 17 (2010), 1-26, arXiv:0804.3258.
  15. Fujita H., Furuta M., Yoshida T., Torus fibrations and localization of index II: local index for acyclic compatible system, Comm. Math. Phys. 326 (2014), 585-633, arXiv:0910.0358.
  16. Goldman W., Hirsch M.W., The radiance obstruction and parallel forms on affine manifolds, Trans. Amer. Math. Soc. 286 (1984), 629-649.
  17. Guillemin V., Sternberg S., The Gelfand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal. 52 (1983), 106-128.
  18. Hall B.C., Geometric quantization and the generalized Segal-Bargmann transform for Lie groups of compact type, Comm. Math. Phys. 226 (2002), 233-268, arXiv:quant-ph/0012105.
  19. Hall B.C., Quantum theory for mathematicians, Grad. Texts Math., Vol. 267, Springer, New York, 2013.
  20. Hamilton M.D., Harada M., Kaveh K., Convergence of polarizations, toric degenerations, and Newton-Okounkov bodies, Comm. Anal. Geom. 29 (2021), 1183-1231, arXiv:1612.08981v2.
  21. Hamilton M.D., Konno H., Convergence of Kähler to real polarizations on flag manifolds via toric degenerations, J. Symplectic Geom. 12 (2014), 473-509, arXiv:1105.0741.
  22. Jeffrey L.C., Weitsman J., Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula, Comm. Math. Phys. 150 (1992), 593-630.
  23. Kamiyama Y., The cohomology of spatial polygon spaces with anticanonical sheaf, Int. J. Appl. Math. 3 (2000), 339-343.
  24. Kirillov A.A., Geometric quantization, in Dynamical Systems, IV, Encyclopaedia Math. Sci., Vol. 4, Springer, Berlin, 2001, 139-176.
  25. Kirwin W.D., Uribe A., Theta functions on the Kodaira-Thurston manifold, Trans. Amer. Math. Soc. 362 (2010), 897-932, arXiv:0712.4016.
  26. Kodaira K., On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751-798.
  27. Kostant B., Quantization and unitary representations, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, 87-208.
  28. Kubota Y., The joint spectral flow and localization of the indices of elliptic operators, Ann. K-Theory 1 (2016), 43-83, arXiv:1410.5569.
  29. Lascoux A., Berger M., Variétés Kähleriennes compactes, Lecture Notes in Math., Vol. 154, Springer, Berlin, 1970.
  30. Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1989.
  31. Mishachev K.N., The classification of Lagrangian bundles over surfaces, Differential Geom. Appl. 6 (1996), 301-320.
  32. Mumford D., Tata lectures on theta. I, Mod. Birkhäuser Class., Birkhäuser, Boston, MA, 2007.
  33. Mumford D., Tata lectures on theta. III, Mod. Birkhäuser Class., Birkhäuser, Boston, MA, 2007.
  34. Nohara Y., Projective embeddings and Lagrangian fibrations of abelian varieties, Math. Ann. 333 (2005), 741-757.
  35. Nohara Y., Projective embeddings and Lagrangian fibrations of Kummer varieties, Internat. J. Math. 20 (2009), 557-572, arXiv:math.DG/0604329.
  36. Sepe D., Topological classification of Lagrangian fibrations, J. Geom. Phys. 60 (2010), 341-351, arXiv:0910.5450.
  37. Śniatycki J., Geometric quantization and quantum mechanics, Appl. Math. Sci., Vol. 30, Springer, New York, 1980.
  38. Souriau J.-M., Quantification géométrique, Comm. Math. Phys. 1 (1966), 374-398.
  39. Souriau J.-M., Structure of dynamical systems, Progr. Math., Vol. 149, Birkhäuser, Boston, MA, 1997.
  40. Symington M., Four dimensions from two in symplectic topology, in Topology and Geometry of Manifolds, Proc. Sympos. Pure Math., Vol. 71, American Mathematical Society, Providence, RI, 2003, 153-208, arXiv:math.SG/0210033.
  41. Thurston W.P., Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468.
  42. Wolf J.A., Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011.
  43. Woodhouse N.M.J., Geometric quantization, 2nd ed., Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1992.
  44. Yoshida T., Local torus actions modeled on the standard representation, Adv. Math. 227 (2011), 1914-1955, arXiv:0710.2166.

Previous article  Next article  Contents of Volume 20 (2024)