|
SIGMA 20 (2024), 065, 52 pages arXiv:1904.04076
https://doi.org/10.3842/SIGMA.2024.065
Adiabatic Limit, Theta Function, and Geometric Quantization
Takahiko Yoshida
Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
Received March 20, 2023, in final form July 06, 2024; Published online July 19, 2024
Abstract
Let $\pi\colon (M,\omega)\to B$ be a non-singular Lagrangian torus fibration on a complete base $B$ with prequantum line bundle $\bigl(L,\nabla^L\bigr)\to (M,\omega)$. Compactness on $M$ is not assumed. For a positive integer $N$ and a compatible almost complex structure $J$ on $(M,\omega)$ invariant along the fiber of $\pi$, let $D$ be the associated Spin${}^c$ Dirac operator with coefficients in $L^{\otimes N}$. First, in the case where $J$ is integrable, under certain technical condition on $J$, we give a complete orthogonal system $\{ \vartheta_b\}_{b\in B_{\rm BS}}$ of the space of holomorphic $L^2$-sections of $L^{\otimes N}$ indexed by the Bohr-Sommerfeld points $B_{\rm BS}$ such that each $\vartheta_b$ converges to a delta-function section supported on the corresponding Bohr-Sommerfeld fiber $\pi^{-1}(b)$ by the adiabatic(-type) limit. We also explain the relation of $\vartheta_b$ with Jacobi's theta functions when $(M,\omega)$ is $T^{2n}$. Second, in the case where $J$ is not integrable, we give an orthogonal family $\big\{ {\tilde \vartheta}_b\big\}_{b\in B_{\rm BS}}$ of $L^2$-sections of $L^{\otimes N}$ indexed by $B_{\rm BS}$ which has the same property as above, and show that each $D{\tilde \vartheta}_b$ converges to $0$ by the adiabatic(-type) limit with respect to the $L^2$-norm.
Key words: adiabatic limit; theta function; Lagrangian fibration; geometric quantization.
pdf (805 kb)
tex (51 kb)
References
- Andersen J.E., Geometric quantization of symplectic manifolds with respect to reducible non-negative polarizations, Comm. Math. Phys. 183 (1997), 401-421.
- Arnold V.I., Mathematical methods of classical mechanics, 2nd ed., Grad. Texts Math., Vol. 60, Springer, New York, 1989.
- Baier T., Florentino C., Mourão J.M., Nunes J.P., Toric Kähler metrics seen from infinity, quantization and compact tropical amoebas, J. Differential Geom. 89 (2011), 411-454, arXiv:0806.0606.
- Baier T., Mourão J.M., Nunes J.P., Quantization of abelian varieties: distributional sections and the transition from Kähler to real polarizations, J. Funct. Anal. 258 (2010), 3388-3412, arXiv:0907.5324.
- Bieberbach L., Über die Bewegungsgruppen der Euklidischen Räume, Math. Ann. 70 (1911), 297-336.
- Bieberbach L., Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich, Math. Ann. 72 (1912), 400-412.
- Borthwick D., Uribe A., Almost complex structures and geometric quantization, Math. Res. Lett. 3 (1996), 845-861, arXiv:dg-ga/9608006.
- Bott R., Tu L.W., Differential forms in algebraic topology, Grad. Texts Math., Vol. 82, Springer, New York, 1982.
- Danilov V.I., The geometry of toric varieties, Russian Math. Surveys 33 (1978), 97-154.
- Duistermaat J.J., On global action-angle coordinates, Comm. Pure Appl. Math. 33 (1980), 687-706.
- Duistermaat J.J., The heat kernel Lefschetz fixed point formula for the spin-$c$ Dirac operator, Progr. Nonlinear Differential Equations Appl., Vol. 18, Birkhäuser, Boston, MA, 1996.
- Egorov D.V., Theta functions on $T^2$-bundles over $T^2$ with the zero Euler class, Sib. Math. J. 50 (2009), 647-657, arXiv:1110.2322.
- Egorov D.V., Theta functions on the Kodaira-Thurston manifold, Sib. Math. J. 50 (2009), 253-260, arXiv:0902.2843.
- Fujita H., Furuta M., Yoshida T., Torus fibrations and localization of index I, J. Math. Sci. Univ. Tokyo 17 (2010), 1-26, arXiv:0804.3258.
- Fujita H., Furuta M., Yoshida T., Torus fibrations and localization of index II: local index for acyclic compatible system, Comm. Math. Phys. 326 (2014), 585-633, arXiv:0910.0358.
- Goldman W., Hirsch M.W., The radiance obstruction and parallel forms on affine manifolds, Trans. Amer. Math. Soc. 286 (1984), 629-649.
- Guillemin V., Sternberg S., The Gelfand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal. 52 (1983), 106-128.
- Hall B.C., Geometric quantization and the generalized Segal-Bargmann transform for Lie groups of compact type, Comm. Math. Phys. 226 (2002), 233-268, arXiv:quant-ph/0012105.
- Hall B.C., Quantum theory for mathematicians, Grad. Texts Math., Vol. 267, Springer, New York, 2013.
- Hamilton M.D., Harada M., Kaveh K., Convergence of polarizations, toric degenerations, and Newton-Okounkov bodies, Comm. Anal. Geom. 29 (2021), 1183-1231, arXiv:1612.08981v2.
- Hamilton M.D., Konno H., Convergence of Kähler to real polarizations on flag manifolds via toric degenerations, J. Symplectic Geom. 12 (2014), 473-509, arXiv:1105.0741.
- Jeffrey L.C., Weitsman J., Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula, Comm. Math. Phys. 150 (1992), 593-630.
- Kamiyama Y., The cohomology of spatial polygon spaces with anticanonical sheaf, Int. J. Appl. Math. 3 (2000), 339-343.
- Kirillov A.A., Geometric quantization, in Dynamical Systems, IV, Encyclopaedia Math. Sci., Vol. 4, Springer, Berlin, 2001, 139-176.
- Kirwin W.D., Uribe A., Theta functions on the Kodaira-Thurston manifold, Trans. Amer. Math. Soc. 362 (2010), 897-932, arXiv:0712.4016.
- Kodaira K., On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751-798.
- Kostant B., Quantization and unitary representations, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, 87-208.
- Kubota Y., The joint spectral flow and localization of the indices of elliptic operators, Ann. K-Theory 1 (2016), 43-83, arXiv:1410.5569.
- Lascoux A., Berger M., Variétés Kähleriennes compactes, Lecture Notes in Math., Vol. 154, Springer, Berlin, 1970.
- Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1989.
- Mishachev K.N., The classification of Lagrangian bundles over surfaces, Differential Geom. Appl. 6 (1996), 301-320.
- Mumford D., Tata lectures on theta. I, Mod. Birkhäuser Class., Birkhäuser, Boston, MA, 2007.
- Mumford D., Tata lectures on theta. III, Mod. Birkhäuser Class., Birkhäuser, Boston, MA, 2007.
- Nohara Y., Projective embeddings and Lagrangian fibrations of abelian varieties, Math. Ann. 333 (2005), 741-757.
- Nohara Y., Projective embeddings and Lagrangian fibrations of Kummer varieties, Internat. J. Math. 20 (2009), 557-572, arXiv:math.DG/0604329.
- Sepe D., Topological classification of Lagrangian fibrations, J. Geom. Phys. 60 (2010), 341-351, arXiv:0910.5450.
- Śniatycki J., Geometric quantization and quantum mechanics, Appl. Math. Sci., Vol. 30, Springer, New York, 1980.
- Souriau J.-M., Quantification géométrique, Comm. Math. Phys. 1 (1966), 374-398.
- Souriau J.-M., Structure of dynamical systems, Progr. Math., Vol. 149, Birkhäuser, Boston, MA, 1997.
- Symington M., Four dimensions from two in symplectic topology, in Topology and Geometry of Manifolds, Proc. Sympos. Pure Math., Vol. 71, American Mathematical Society, Providence, RI, 2003, 153-208, arXiv:math.SG/0210033.
- Thurston W.P., Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468.
- Wolf J.A., Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011.
- Woodhouse N.M.J., Geometric quantization, 2nd ed., Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1992.
- Yoshida T., Local torus actions modeled on the standard representation, Adv. Math. 227 (2011), 1914-1955, arXiv:0710.2166.
|
|