Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 056, 26 pages      arXiv:2311.07195      https://doi.org/10.3842/SIGMA.2024.056
Contribution to the Special Issue on Symmetry, Invariants, and their Applications in honor of Peter J. Olver

Talbot Effect for the Manakov System on the Torus

Zihan Yin a, Jing Kang a, Xiaochuan Liu b and Changzheng Qu c
a) Center for Nonlinear Studies and School of Mathematics, Northwest University, Xi'an 710069, P.R. China
b) School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
c) Center for Nonlinear Studies and Department of Mathematics, Ningbo University, Ningbo 315211, P.R. China

Received November 13, 2023, in final form June 17, 2024; Published online June 25, 2024

Abstract
In this paper, the Talbot effect for the multi-component linear and nonlinear systems of the dispersive evolution equations on a bounded interval subject to periodic boundary conditions and discontinuous initial profiles is investigated. Firstly, for a class of two-component linear systems satisfying the dispersive quantization conditions, we discuss the fractal solutions at irrational times. Next, the investigation to nonlinear regime is extended, we prove that, for the concrete example of the Manakov system, the solutions of the corresponding periodic initial-boundary value problem subject to initial data of bounded variation are continuous but nowhere differentiable fractal-like curve with Minkowski dimension 3/2 at irrational times. Finally, numerical experiments for the periodic initial-boundary value problem of the Manakov system, are used to justify how such effects persist into the multi-component nonlinear regime. Furthermore, it is shown in the nonlinear multi-component regime that the interplay of different components may induce subtle different qualitative profile between the jump discontinuities, especially in the case that two nonlinearly coupled components start with different initial profile.

Key words: Talbot effect; dispersive fractalization; dispersive quantization; multi-component dispersive equation; Manakov system.

pdf (1139 kb)   tex (1251 kb)  

References

  1. Berry M.V., Quantum fractals in boxes, J. Phys. A 29 (1996), 6617-6629.
  2. Berry M.V., Klein S., Integer, fractional and fractal Talbot effects, J. Modern Opt. 43 (1996), 2139-2164.
  3. Berry M.V., Marzoli I., Schleich W., Quantum carpets, carpets of light, Phys. World 14 (2001), 39-44.
  4. Boulton L., Farmakis G., Pelloni B., Beyond periodic revivals for linear dispersive PDEs, Proc. A. 477 (2021), 20210241, 20 pages, arXiv:2103.01663.
  5. Boulton L., Olver P.J., Pelloni B., Smith D.A., New revival phenomena for linear integro-differential equations, Stud. Appl. Math. 147 (2021), 1209-1239, arXiv:2010.01320.
  6. Bourgain J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107-156.
  7. Bourgain J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), 209-262.
  8. Bourgain J., Global solutions of nonlinear Schrödinger equations, Amer. Math. Soc. Colloq. Publ., Vol. 46, American Mathematical Society, Providence, RI, 1999.
  9. Chen G., Olver P.J., Dispersion of discontinuous periodic waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), 20120407, 21 pages.
  10. Chen G., Olver P.J., Numerical simulation of nonlinear dispersive quantization, Discrete Contin. Dyn. Syst. 34 (2014), 991-1008.
  11. Chousionis V., Erdougan M.B., Tzirakis N., Fractal solutions of linear and nonlinear dispersive partial differential equations, Proc. Lond. Math. Soc. 110 (2015), 543-564, arXiv:1406.3283.
  12. Deliu A., Jawerth B., Geometrical dimension versus smoothness, Constr. Approx. 8 (1992), 211-222.
  13. Erdougan M.B., Shakan G., Fractal solutions of dispersive partial differential equations on the torus, Selecta Math. (N.S.) 25 (2019), 11, 26 pages, arXiv:1803.00674.
  14. Erdougan M.B., Tzirakis N., Global smoothing for the periodic KdV evolution, Int. Math. Res. Not. 2013 (2013), 4589-4614, arXiv:1103.4190.
  15. Erdougan M.B., Tzirakis N., Talbot effect for the cubic non-linear Schrödinger equation on the torus, Math. Res. Lett. 20 (2013), 1081-1090, arXiv:1303.3604.
  16. Erdougan M.B., Tzirakis N., Dispersive partial differential equations: wellposedness and applications, London Math. Soc. Stud. Texts, Vol. 86, Cambridge University Press, Cambridge, 2016.
  17. Gottlieb D., Orszag S.A., Numerical analysis of spectral methods: theory and applications, CBMS-NSF Regional Conf. Ser. in Appl. Math., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1977.
  18. Hasegawa A., Tappert F., Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers. I. Anamalous dispersion, Appl. Phys. Lett. 23 (1973), 142-144.
  19. Hasegawa A., Tappert F., Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers. II. Normal dispersion, Appl. Phys. Lett. 23 (1973), 171-172.
  20. Kapitanski L., Rodnianski I., Does a quantum particle know the time?, in Emerging Applications of Number Theory (Minneapolis, MN, 1996), IMA Vol. Math. Appl., Vol. 109, Springer, New York, 1999, 355-371, arXiv:quant-ph/9711062.
  21. Khinchin A.Ya., Continued fractions, University of Chicago Press, Chicago, Ill., 1964.
  22. Lévy P., Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris, 1937.
  23. Manakov S.V., Complete integrability and stochastization of discrete dynamical systems, Sov. Phys. JETP 40 (1975), 269-274.
  24. Montgomery H.L., Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Reg. Conf. Ser. Math., Vol. 84, American Mathematical Society, Providence, RI, 1994.
  25. Olver P.J., Dispersive quantization, Amer. Math. Monthly 117 (2010), 599-610.
  26. Olver P.J., Sheils N.E., Smith D.A., Revivals and fractalisation in the linear free space Schrödinger equation, Quart. Appl. Math. 78 (2020), 161-192, arXiv:1812.08637.
  27. Oskolkov K.I., A class of I.M. Vinogradov's series and its applications in harmonic analysis, in Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math., Vol. 19, Springer, New York, 1992, 353-402.
  28. Oskolkov K.I., Schrödinger equation and oscillatory Hilbert transforms of second degree, J. Fourier Anal. Appl. 4 (1998), 341-356.
  29. Rodnianski I., Fractal solutions of the Schrödinger equation, in Nonlinear PDE's, Dynamics and Continuum Physics (South Hadley, MA, 1998), Contemp. Math., Vol. 255, American Mathematical Society, Providence, RI, 2000, 181-187.
  30. Smith D.A., Revivals and fractalization, Dyn. Sys. Web 2020 (2020), 8 pages, available at https://dsweb.siam.org/The-Magazine/All-Issues/revivals-and-fractalization.
  31. Talbot H.F., Facts related to optical science, Philos. Mag. 9 (1836), 401-407.
  32. Taylor M., The Schrödinger equation on spheres, Pacific J. Math. 209 (2003), 145-155.
  33. Trefethen L.N., Spectral methods in MATLAB, Software Environ. Tools, Vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
  34. Triebel H., Theory of function spaces, Monogr. Math., Vol. 78, Birkhäuser, Basel, 1983.
  35. Vrakking M.J.J., Villeneuve D.M., Stolow A., Observation of fractional revivals of a molecular wavepacket, Phys. Rev. A 54 (1996), R37-R40.
  36. Whitham G.B., Linear and nonlinear waves, John Wiley & Sons, New York, 1999.
  37. Yin Z., Kang J., Qu C., Dispersive quantization and fractalization for multi-component dispersive equations, Phys. D 444 (2023), 133598, 9 pages.
  38. Zakharov V.E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 2 (1968), 190-194.
  39. Zakharov V.E., Berhoer A., Self-excitation of waves with different polarization in a nonlinear dielectrics, Sov. Phys. JETP 31 (1970), 486-490.
  40. Zakharov V.E., Schul'man E.I., To the integrability of the system of two coupled nonlinear Schrödinger equations, Phys. D 4 (1982), 270-274.
  41. Zakharov V.E., Shabat A.B., A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funct. Anal. Appl. 8 (1974), 226-235.

Previous article  Next article  Contents of Volume 20 (2024)