|
SIGMA 20 (2024), 055, 87 pages arXiv:2111.06645
https://doi.org/10.3842/SIGMA.2024.055
Knots, Perturbative Series and Quantum Modularity
Stavros Garoufalidis a and Don Zagier bc
a) International Center for Mathematics, Department of Mathematics, Southern University of Science and Technology, Shenzhen, P.R. China
b) Max Planck Institute for Mathematics, Bonn, Germany
c) International Centre for Theoretical Physics, Trieste, Italy
Received April 25, 2023, in final form May 26, 2024; Published online June 24, 2024
Abstract
We introduce an invariant of a hyperbolic knot which is a map $\alpha\mapsto \boldsymbol{\Phi}_\alpha(h)$ from $\mathbb{Q}/\mathbb{Z}$ to matrices with entries in $\overline{\mathbb{Q}}[[h]]$ and with rows and columns indexed by the boundary parabolic ${\rm SL}_2(\mathbb{C})$ representations of the fundamental group of the knot. These matrix invariants have a rich structure: (a) their $(\sigma_0,\sigma_1)$ entry, where $\sigma_0$ is the trivial and $\sigma_1$ the geometric representation, is the power series expansion of the Kashaev invariant of the knot around the root of unity ${\rm e}^{2\pi{\rm i} \alpha}$ as an element of the Habiro ring, and the remaining entries belong to generalized Habiro rings of number fields; (b) the first column is given by the perturbative power series of Dimofte-Garoufalidis; (c) the columns of $\boldsymbol{\Phi}$ are fundamental solutions of a linear $q$-difference equation; (d) the matrix defines an ${\rm SL}_2(\mathbb{Z})$-cocycle $W_\gamma$ in matrix-valued functions on $\mathbb{Q}$ that conjecturally extends to a smooth function on $\mathbb{R}$ and even to holomorphic functions on suitable complex cut planes, lifting the factorially divergent series $\boldsymbol{\Phi}(h)$ to actual functions. The two invariants $\boldsymbol{\Phi}$ and $W_\gamma$ are related by a refined quantum modularity conjecture which we illustrate in detail for the three simplest hyperbolic knots, the $4_1$, $5_2$ and $(-2,3,7)$ pretzel knots. This paper has two sequels, one giving a different realization of our invariant as a matrix of convergent $q$-series with integer coefficients and the other studying its Habiro-like arithmetic properties in more depth.
Key words: quantum topology; knots; 3-manifolds; Jones polynomial; Kashaev invariant; volume conjecture; Chern-Simons theory; asymptotics; quantum modularity conjecture; quantum modular forms; hyperbolic 3-manifolds; dilogarithm; cocycles; $\mathrm{SL}_2(\mathbb{Z})$; denominators; Habiro-like functions; functions near $\mathbb{Q}$; Neumann-Zagier matrices; Nahm sums; $q$-holonomic modules.
pdf (1443 kb)
tex (376 kb)
References
- Andersen J.E., Kashaev R., A TQFT from quantum Teichmüller theory, Comm. Math. Phys. 330 (2014), 887-934, arXiv:1109.6295.
- Atiyah M.F., Hirzebruch F., Cohomologie-Operationen und charakteristische Klassen, Math. Z. 77 (1961), 149-187.
- Bar-Natan D., KnotAtlas, 2005, available at http://katlas.org.
- Beem C., Dimofte T., Pasquetti S., Holomorphic blocks in three dimensions, J. High Energy Phys. 2014 (2014), no. 12, 177, 118 pages, arXiv:1211.1986.
- Bender C.M., Orszag S.A., Advanced mathematical methods for scientists and engineers, Int. Ser. Monogr. Pure Appl. Math., McGraw-Hill Book Co., New York, 1978.
- Bettin S., Drappeau S., Modularity and value distribution of quantum invariants of hyperbolic knots, Math. Ann. 382 (2022), 1631-1679, arXiv:1905.02045.
- Borot G., Eynard B., All order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials, Quantum Topol. 6 (2015), 39-138, arXiv:1205.2261.
- Boyd D.W., Rodriguez-Villegas F., Mahler's measure and the dilogarithm. (II) (2005),, arXiv:math.NT/0308041.
- Calegari D., Real places and torus bundles, Geom. Dedicata 118 (2006), 209-227, arXiv:math.GT/0510416.
- Calegari F., Garoufalidis S., Zagier D., Bloch groups, algebraic $K$-theory, units, and Nahm's conjecture, Ann. Sci. Éc. Norm. Supér. (4) 56 (2023), 383-426, arXiv:1712.04887.
- Cooper D., Culler M., Gillet H., Long D.D., Shalen P.B., Plane curves associated to character varieties of $3$-manifolds, Invent. Math. 118 (1994), 47-84.
- Culler M., Dunfield N., Weeks J., SnapPy, a computer program for studying the topology of $3$-manifolds, 2015, available at http://snappy.computop.org/.
- Dimofte T., Gaiotto D., Gukov S., Gauge theories labelled by three-manifolds, Comm. Math. Phys. 325 (2014), 367-419, arXiv:1108.4389.
- Dimofte T., Garoufalidis S., The quantum content of the gluing equations, Geom. Topol. 17 (2013), 1253-1315, arXiv:1202.6268.
- Dimofte T., Garoufalidis S., Quantum modularity and complex Chern-Simons theory, Commun. Number Theory Phys. 12 (2018), 1-52, arXiv:1511.05628.
- Dimofte T., Gukov S., Lenells J., Zagier D., Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Number Theory Phys. 3 (2009), 363-443, arXiv:0903.2472.
- Dunfield N.M., Thurston W.P., The virtual Haken conjecture: experiments and examples, Geom. Topol. 7 (2003), 399-441, arXiv:math.GT/0209214.
- Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Sulkowski P., $\widehat{Z}$ at large $N$: from curve counts to quantum modularity, Comm. Math. Phys. 396 (2022), 143-186, arXiv:2005.13349.
- Faddeev L.D., Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995), 249-254, arXiv:hep-th/9504111.
- Faddeev L.D., Kashaev R.M., Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), 427-434, arXiv:hep-th/9310070.
- Fock V., Goncharov A., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1-211, arXiv:math.AG/0311149.
- Gang D., Kim S., Yoon S., Adjoint Reidemeister torsions from wrapped M5-branes, Adv. Theor. Math. Phys. 25 (2021), 1819-1845, arXiv:1911.10718.
- Garoufalidis S., Chern-Simons theory, analytic continuation and arithmetic, Acta Math. Vietnam. 33 (2008), 335-362, arXiv:0711.1716.
- Garoufalidis S., Twist knots data, 2010, available at http://people.mpim-bonn.mpg.de/stavros/publications/twist.knot.data.
- Garoufalidis S., Pretzel knots data, 2012, available at http://people.mpim-bonn.mpg.de/stavros/publications/pretzel.data.
- Garoufalidis S., Goerner M., Zickert C.K., The Ptolemy field of 3-manifold representations, Algebr. Geom. Topol. 15 (2015), 371-397, arXiv:1401.5542.
- Garoufalidis S., Gu J., Mariño M., The resurgent structure of quantum knot invariants, Comm. Math. Phys. 386 (2021), 469-493, arXiv:2007.10190.
- Garoufalidis S., Gu J., Mariño M., Peacock patterns and resurgence in complex Chern-Simons theory, Res. Math. Sci. 10 (2023), 29, 67 pages, arXiv:2012.00062.
- Garoufalidis S., Kashaev R., Evaluation of state integrals at rational points, Commun. Number Theory Phys. 9 (2015), 549-582, arXiv:1411.6062.
- Garoufalidis S., Kashaev R., From state integrals to $q$-series, Math. Res. Lett. 24 (2017), 781-801, arXiv:1304.2705.
- Garoufalidis S., Kashaev R., The descendant colored Jones polynomials, Pure Appl. Math. Q. 19 (2023), 2307-2334, arXiv:2108.07553.
- Garoufalidis S., Kashaev R., Zagier D., A modular quantum dilogarithm and invariants of 3-manifolds, in preparation.
- Garoufalidis S., Koutschan C., The noncommutative $A$-polynomial of $(-2,3,n)$ pretzel knots, Exp. Math. 21 (2012), 241-251, arXiv:1101.2844.
- Garoufalidis S., Koutschan C., Irreducibility of $q$-difference operators and the knot $7_4$, Algebr. Geom. Topol. 13 (2013), 3261-3286, arXiv:1211.6020.
- Garoufalidis S., Lê T.T.Q., The colored Jones function is $q$-holonomic, Geom. Topol. 9 (2005), 1253-1293, arXiv:math.GT/0309214.
- Garoufalidis S., Lê T.T.Q., From 3-dimensional skein theory to functions near $\mathbb{Q}$, Ann. Inst. Fourier, to appear, arXiv:2307.09135.
- Garoufalidis S., Sabo E., Scott S., Exact computation of the $n$-loop invariants of knots, Exp. Math. 25 (2016), 125-129, arXiv:6458.2015.
- Garoufalidis S., Scholze P., Wheeler C., Zagier D., The Habiro ring of a number field, in preparation.
- Garoufalidis S., Sun X., The non-commutative $A$-polynomial of twist knots, J. Knot Theory Ramifications 19 (2010), 1571-1595, arXiv:0802.4074.
- Garoufalidis S., Thurston D.P., Zickert C.K., The complex volume of ${\rm SL}(n,\mathbb{C})$-representations of 3-manifolds, Duke Math. J. 164 (2015), 2099-2160, arXiv:1111.2828.
- Garoufalidis S., van der Veen R., Asymptotics of classical spin networks (with an appendix by Don Zagier), Geom. Topol. 17 (2013), 1-37, arXiv:0902.3113.
- Garoufalidis S., Zagier D., Asymptotics of Nahm sums at roots of unity, Ramanujan J. 55 (2021), 219-238, arXiv:1812.07690.
- Garoufalidis S., Zagier D., Hyperbolic 3-manifolds, the Bloch group, and the work of Walter Neumann, Celebratio Math., 2023, available at https://celebratio.org/Neumann_WD/article/1106.
- Garoufalidis S., Zagier D., Knots and their related $q$-series, SIGMA 19 (2023), 082, 39 pages, arXiv:2304.09377.
- Garoufalidis S., Zagier D., Resummation of factorially divergent series, in preparation.
- Goette S., Zickert C.K., The extended Bloch group and the Cheeger-Chern-Simons class, Geom. Topol. 11 (2007), 1623-1635, arXiv:0705.0500.
- Grünberg D.B., Moree P., Zagier D., Sequences of enumerative geometry: congruences and asymptotics, Exp. Math. 17 (2008), 409-426, arXiv:math.NT/0610286.
- Gukov S., Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Comm. Math. Phys. 255 (2005), 577-627, arXiv:hep-th/0306165.
- Gukov S., Mariño M., Putrov P., Resurgence in complex Chern-Simons theory, arXiv:1605.07615.
- Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications 29 (2020), 2040003, 85 pages, arXiv:2040003.
- Gunningham S., Jordan D., Safronov P., The finiteness conjecture for skein modules, Invent. Math. 232 (2023), 301-363, arXiv:1908.05233.
- Habiro K., On the quantum $\rm sl_2$ invariants of knots and integral homology spheres, in Invariants of Knots and 3-manifolds, Geom. Topol. Monogr., Vol. 4, Geometry & Topology Publications, Coventry, 2002, 55-68, arXiv:math.GT/0211044.
- Hikami K., Generalized volume conjecture and the $A$-polynomials: the Neumann-Zagier potential function as a classical limit of the partition function, J. Geom. Phys. 57 (2007), 1895-1940, arXiv:math.QA/0604094.
- Hirzebruch F., Topological methods in algebraic geometry, Class. Math., Springer, Berlin, 1995.
- Hirzebruch F., Zagier D., The Atiyah-Singer theorem and elementary number theory, Math. Lect. Ser., Vol. 3, Publish or Perish, Inc., Boston, MA, 1974.
- Igusa J., Theta functions, Grundlehren Math. Wiss., Vol. 194, Springer, New York, 1972.
- Jones V.F.R., Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388.
- Kashaev R., A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995), 1409-1418, arXiv:q-alg/9504020.
- Kashaev R., The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997), 269-275, arXiv:q-alg/9601025.
- Kashaev R., Mangazeev V., Stroganov Yu., Star-square and tetrahedron equations in the Baxter-Bazhanov model, Internat. J. Modern Phys. A 8 (1993), 1399-1409.
- Kontsevich M., Talks on resurgence, July 20, 2020 and August 21, 2020.
- Lawrence R., Zagier D., Modular forms and quantum invariants of $3$-manifolds, Asian J. Math. 3 (1999), 93-107.
- Lewis J., Zagier D., Period functions for Maass wave forms. I, Ann. of Math. 153 (2001), 191-258, arXiv:math.NT/0101270.
- Murakami H., Murakami J., The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001), 85-104, arXiv:math/9905075.
- Neumann W.D., Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic $3$-manifolds, in Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., Vol. 1, de Gruyter, Berlin, 1992, 243-271.
- Neumann W.D., Extended Bloch group and the Cheeger-Chern-Simons class, Geom. Topol. 8 (2004), 413-474, arXiv:math/0307092.
- Neumann W.D., Zagier D., Volumes of hyperbolic three-manifolds, Topology 24 (1985), 307-332.
- Ohtsuki T., A polynomial invariant of rational homology $3$-spheres, Invent. Math. 123 (1996), 241-257.
- Rademacher H., Zur Theorie der Dedekindschen Summen, Math. Z. 63 (1956), 445-463.
- Sloane N., Online encyclopedia of integer sequences, available at https://oeis.org.
- Suslin A.A., $K_3$ of a field, and the Bloch group, Proc. Steklov Inst. Math. 1991 (1991), no. 4, 217-239.
- Thurston W., The geometry and topology of 3-manifolds, Universitext, Springer, Berlin, 1977.
- Turaev V.G., The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), 527-553.
- van der Veen R., Proof of the volume conjecture for Whitehead chains, Acta Math. Vietnam. 33 (2008), 421-431, arXiv:math.GT/0611181.
- Vlasenko M., Zwegers S., Nahm's conjecture: asymptotic computations and counterexamples, Commun. Number Theory Phys. 5 (2011), 617-642, arXiv:1104.4008.
- Wheeler C., Modular $q$-difference equations and quantum invariants of hyperbolic three-manifolds, Ph.D. Thesis, University of Bonn, 2023.
- Wilf H.S., Zeilberger D., An algorithmic proof theory for hypergeometric (ordinary and ''$q$'') multisum/integral identities, Invent. Math. 108 (1992), 575-633.
- Witten E., Analytic continuation of Chern-Simons theory, in Chern-Simons Gauge Theory: 20 Years After, AMS/IP Stud. Adv. Math., Vol. 50, American Mathematical Society, Providence, RI, 2011, 347-446, arXiv:1001.2933.
- Witten E., Fivebranes and knots, Quantum Topol. 3 (2012), 1-137, arXiv:1101.3216.
- Witten E., Two lectures on the Jones polynomial and Khovanov homology, in Lectures on Geometry, Clay Lect. Notes, Oxford University Press, Oxford, 2017, 1-27, arXiv:1401.6996.
- Witten E., Searching for new invariants of 4-manifolds and knots, January 2020, Auckland, New Zealand.
- Zagier D., Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001), 945-960.
- Zagier D., The dilogarithm function, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3-65.
- Zagier D., Quantum modular forms, in Quanta of Maths, Clay Math. Proc., Vol. 11, American Mathematical Society, Providence, RI, 2010, 659-675.
- Zagier D., Holomorphic quantum modular forms, in preparation.
- Zagier D., Gangl H., Classical and elliptic polylogarithms and special values of $L$-series, in The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., Vol. 548, Kluwer, Dordrecht, 2000, 561-615.
- Zickert C.K., The volume and Chern-Simons invariant of a representation, Duke Math. J. 150 (2009), 489-532, arXiv:0710.2049.
- Zickert C.K., The extended Bloch group and algebraic $K$-theory, J. Reine Angew. Math. 704 (2015), 21-54, arXiv:0910.4005.
|
|