|
SIGMA 20 (2024), 053, 16 pages arXiv:2308.06158
https://doi.org/10.3842/SIGMA.2024.053
Infinitesimal Modular Group: $q$-Deformed $\mathfrak{sl}_2$ and Witt Algebra
Alexander Thomas
Universität Heidelberg, Berliner Str. 41-49, 69120 Heidelberg, Germany
Received December 01, 2023, in final form June 03, 2024; Published online June 20, 2024
Abstract
We describe new $q$-deformations of the 3-dimensional Heisenberg algebra, the simple Lie algebra $\mathfrak{sl}_2$ and the Witt algebra. They are constructed through a realization as differential operators. These operators are related to the modular group and $q$-deformed rational numbers defined by Morier-Genoud and Ovsienko and lead to $q$-deformed Möbius transformations acting on the hyperbolic plane.
Key words: quantum algebra; Lie algebra deformations; $q$-Virasoro; Burau representation.
pdf (429 kb)
tex (22 kb)
References
- Avan J., Frappat L., Ragoucy E., Deformed Virasoro algebras from elliptic quantum algebras, Comm. Math. Phys. 354 (2017), 753-773, arXiv:1607.05050.
- Bapat A., Becker L., Licata A.M., $q$-deformed rational numbers and the 2-Calabi-Yau category of type $A_2$, Forum Math. Sigma 11 (2023), e47, 41 pages, arXiv:2202.07613.
- Bharathram V., Birman J., On the Burau representation of $B_4$, Involve 14 (2021), 143-154, arXiv:2208.12378.
- Burau W., Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Univ. Hamburg 11 (1935), 179-186.
- Chaichian M., Isaev A.P., Lukierski J., Popowicz Z., Prešnajder P., $q$-deformations of Virasoro algebra and conformal dimensions, Phys. Lett. B 262 (1991), 32-38.
- Curtright T.L., Zachos C.K., Deforming maps for quantum algebras, Phys. Lett. B 243 (1990), 237-244.
- Frenkel E., Reshetikhin N., Quantum affine algebras and deformations of the Virasoro and ${\mathcal W}$-algebras, Comm. Math. Phys. 178 (1996), 237-264, arXiv:q-alg/9505025.
- Hartwig J.T., Larsson D., Silvestrov S.D., Deformations of Lie algebras using $\sigma$-derivations, J. Algebra 295 (2006), 314-361, arXiv:math.QA/0408064.
- Hu N., $q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations, Algebra Colloq. 6 (1999), 51-70, arXiv:math.QA/0512526.
- Kassel C., Cyclic homology of differential operators, the Virasoro algebra and a $q$-analogue, Comm. Math. Phys. 146 (1992), 343-356.
- Khesin B., Lyubashenko V., Roger C., Extensions and contractions of the Lie algebra of $q$-pseudodifferential symbols on the circle, J. Funct. Anal. 143 (1997), 55-97, arXiv:hep-th/9403189.
- Morier-Genoud S., Ovsienko V., $q$-deformed rationals and $q$-continued fractions, Forum Math. Sigma 8 (2020), e13, 55 pages, arXiv:1812.00170.
- Morier-Genoud S., Ovsienko V., On $q$-deformed real numbers, Exp. Math. 31 (2022), 652-660, arXiv:1908.04365.
- Morier-Genoud S., Ovsienko V., Veselov A.P., Burau representation of braid groups and $q$-rationals, Int. Math. Res. Not. 2024 (2024), 8618-8627, arXiv:2309.04240.
- Nedelin A., Zabzine M., $q$-Virasoro constraints in matrix models, J. High Energy Phys. 2017 (2017), no. 3, 098, 17 pages, arXiv:1511.03471.
- Nigro A., A $q$-Virasoro algebra at roots of unity, free fermions, and Temperley-Lieb hamiltonians, J. Math. Phys. 57 (2016), 041702, 12 pages, arXiv:1211.1067.
- Ovsienko V., Towards quantized complex numbers: $q$-deformed Gaussian integers and the Picard group, Open Commun. Nonlinear Math. Phys. 1 (2021), 73-93, arXiv:2103.10800.
- Scherich N., Classification of the real discrete specialisations of the Burau representation of $B_3$, Math. Proc. Cambridge Philos. Soc. 168 (2020), 295-304, arXiv:1801.08203.
- Shiraishi J., Kubo H., Awata H., Odake S., A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions, Lett. Math. Phys. 38 (1996), 33-51, arXiv:q-alg/9507034.
- Tsallis C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988), 479-487.
|
|