|
SIGMA 20 (2024), 051, 30 pages arXiv:2305.17974
https://doi.org/10.3842/SIGMA.2024.051
On the Structure of Set-Theoretic Polygon Equations
Folkert Müller-Hoissen
Institut für Theoretische Physik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Received December 29, 2023, in final form May 29, 2024; Published online June 11, 2024
Abstract
Polygon equations generalize the prominent pentagon equation in very much the same way as simplex equations generalize the famous Yang-Baxter equation. In particular, they appeared as ''cocycle equations'' in Street's category theory associated with oriented simplices. Whereas the $(N-1)$-simplex equation can be regarded as a realization of the higher Bruhat order $B(N,N-2)$, the $N$-gon equation is a realization of the higher Tamari order $T(N,N-2)$. The latter and its dual $\tilde T(N,N-2)$, associated with which is the dual $N$-gon equation, have been shown to arise as suborders of $B(N,N-2)$ via a ''three-color decomposition''. There are two different reductions of $T(N,N-2)$ and $\tilde T(N,N-2)$, to ${T(N-1,N-3)}$, respectively $\tilde T(N-1,N-3)$. In this work, we explore the corresponding reductions of (dual) polygon equations, which lead to relations between solutions of neighboring (dual) polygon equations. We also elaborate (dual) polygon equations in this respect explicitly up to the octagon equation.
Key words: polygon equations; simplex equations, cocycle equations; pentagon equation; set-theoretic solutions; higher Bruhat orders; higher Tamari orders.
pdf (628 kb)
tex (64 kb)
References
- Baaj S., Skandalis G., Unitaires multiplicatifs et dualité pour les produits croisés de $C^*$-algèbres, Ann. Sci. École Norm. Sup. (4) 26 (1993), 425-488.
- Baratin A., Freidel L., A 2-categorical state sum model, J. Math. Phys. 56 (2015), 011705, 18 pages, arXiv:1409.3526.
- Barrett J.W., Crane L., An algebraic interpretation of the Wheeler-DeWitt equation, Classical Quantum Gravity 14 (1997), 2113-2121, arXiv:gr-qc/9609030.
- Biedenharn L.C., Louck J.D., Angular momentum in quantum physics. Theory and application, Encycl. Math. Appl., Vol. 8, Addison-Wesley Publishing Co., Reading, MA, 1981.
- Catino F., Mazzotta M., Miccoli M.M., Set-theoretical solutions of the pentagon equation on groups, Comm. Algebra 48 (2020), 83-92, arXiv:1902.04310.
- Catino F., Mazzotta M., Stefanelli P., Set-theoretical solutions of the Yang-Baxter and pentagon equations on semigroups, Semigroup Forum 101 (2020), 259-284, arXiv:1910.05393.
- Colazzo I., Jespers E., Kubat L., Set-theoretic solutions of the pentagon equation, Commun. Math. Phys. 380 (2020), 1003-1024, arXiv:2004.04028.
- Crane L., Frenkel I.B., Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35 (1994), 5136-5154, arXiv:hep-th/9405183,.
- Davydov A.A., Pentagon equation and matrix bialgebras, Comm. Algebra 29 (2001), 2627-2650, arXiv:math.QA/0001095.
- Dimakis A., Korepanov I.G., Grassmannian-parameterized solutions to direct-sum polygon and simplex equations, J. Math. Phys. 62 (2021), 051701, 17 pages, arXiv:2009.02352.
- Dimakis A., Müller-Hoissen F., KP line solitons and Tamari lattices, J. Phys. A 44 (2011), 025203, 49 pages, arXiv:1009.1886.
- Dimakis A., Müller-Hoissen F., KP solitons, higher Bruhat and Tamari orders, in Associahedra, Tamari Lattices and Related Structures, Progr. Math., Vol. 299, Birkhäuser, Basel, 2012, 391-423, arXiv:1110.3507.
- Dimakis A., Müller-Hoissen F., Simplex and polygon equations, SIGMA 11 (2015), 042, 49 pages, arXiv:1409.7855.
- Dimakis A., Müller-Hoissen F., Matrix Kadomtsev-Petviashvili equation: tropical limit, Yang-Baxter and pentagon maps, Theoret. and Math. Phys. 196 (2018), 1164-1173, arXiv:1709.09848.
- Doliwa A., Sergeev S.M., The pentagon relation and incidence geometry, J. Math. Phys. 55 (2014), 063504, 21 pages, arXiv:1108.0944.
- Edelman P.H., Reiner V., The higher Stasheff-Tamari posets, Mathematika 43 (1996), 127-154.
- Etingof P., Schiffmann O., Lectures on quantum groups, Lect. Math. Phys., International Press, Boston, MA, 1998.
- Faddeev L.D., Volkov pentagon for the modular quantum dilogarithm, Funct. Anal. Appl. 45 (2011), 291-296, arXiv:1201.6464.
- Faddeev L.D., Kashaev R.M., Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), 427-434, arXiv:hep-th/9310070.
- Gliozzi F., Tateo R., ADE functional dilogarithm identities and integrable models, Phys. Lett. B 348 (1995), 84-88, arXiv:hep-th/9411203.
- Grünbaum B., Configurations of points and lines, Grad. Stud. Math., Vol. 103, American Mathematical Society, Providence, RI, 2009.
- Jiang L., Liu M., On set-theoretical solution of the pentagon equation, Adv. Math. (China) 34 (2005), 331-337.
- Kapranov M.M., Voevodsky V.A., Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results), Cahiers Topologie Géom. Différentielle Catég. 32 (1991), 11-27.
- Kashaev R.M., Quantum dilogarithm as a $6j$-symbol, Modern Phys. Lett. A 9 (1994), 3757-3768, arXiv:hep-th/9411147.
- Kashaev R.M., The Heisenberg double and the pentagon relation, St. Petersburg Math. J. 8 (1997), 585-592, arXiv:q-alg/9503005.
- Kashaev R.M., On matrix generalizations of the dilogarithm, Theoret. and Math. Phys. 118 (1999), 314-318.
- Kashaev R.M., The pentagon equation and mapping class groups of surfaces with marked points, Theoret. and Math. Phys. 123 (2000), 576-581.
- Kashaev R.M., Fully noncommutative discrete Liouville equation, in Infinite Analysis 2010—Developments in Quantum Integrable Systems, RIMS K^okyûroku Bessatsu, Vol. B28, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, 89-98.
- Kashaev R.M., On realizations of Pachner moves in 4d, J. Knot Theory Ramifications 24 (2015), 1541002, 13 pages, arXiv:1504.01979.
- Kashaev R.M., Reshetikhin N., Symmetrically factorizable groups and self-theoretical solutions of the pentagon equation, in Quantum Groups, Contemp. Math., Vol. 433, American Mathematical Society, Providence, RI, 2007, 267-279, arXiv:math.QA/0111171.
- Kashaev R.M., Sergeev S.M., On pentagon, ten-term, and tetrahedron relations, Comm. Math. Phys. 195 (1998), 309-319, arXiv:q-alg/9607032.
- Kassotakis P., Matrix factorizations and pentagon maps, Proc. A. 479 (2023), 20230276, 15 pages, arXiv:2302.02889.
- Kelly G.M., On MacLane's conditions for coherence of natural associativities, commutativities, etc, J. Algebra 1 (1964), 397-402.
- Korepanov I.G., Algebraic formulas whose structure imitates Pachner moves and new types of acyclic complexes, Topology Atlas Invited Contributions 7 (2002), 3 pages, arXiv:math.GT/0312458.
- Korepanov I.G., Quadratic heptagon cohomology, arXiv:2110.08780.
- Korepanov I.G., Heptagon relation in a direct sum, St. Petersburg Math. J. 33 (2022), 675-686, arXiv:2003.10335.
- Korepanov I.G., Odd-gon relations and their cohomology, arXiv:2205.00405.
- Kustermans J., Vaes S., The operator algebra approach to quantum groups, Proc. Natl. Acad. Sci. USA 97 (2000), 547-552.
- Lickorish W.B.R., Simplicial moves on complexes and manifolds, in Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., Vol. 2, Geom. Topol. Publ., Coventry, 1999, 299-320, arXiv:math.GT/9911256.
- Mac Lane S., Natural associativity and commutativity, Rice Univ. Stud. 49 (1963), 28-46.
- Maillet J., On pentagon and tetrahedron equationsy, St. Petersburg Math. J. 6 (1995), 375-383, arXiv:hep-th/9312037.
- Manin Yu.I., Schechtman V.V., Arrangements of real hyperplanes and Zamolodchikov equations, in Group Theoretical Methods in Physics, Vol. I (Yurmala, 1985), VNU Science Press, Utrecht, 1986, 151-165.
- Manin Yu.I., Schechtman V.V., Higher Bruhat orders, related to the symmetric group, Funct. Anal. Appl. 20 (1986), 148-150.
- Markl M., Models for operads, Comm. Algebra 24 (1996), 1471-1500, arXiv:hep-th/9411208.
- Mazzotta M., Idempotent set-theoretical solutions of the pentagon equation, Boll. Unione Mat. Ital. 17 (2024), 457–469, arXiv:2301.01643.
- Mazzotta M., Pérez-Calabuig V., Stefanelli P., Set-theoretical solutions of the pentagon equation on Clifford semigroups, Semigroup Forum 108 (2024), 413-431, arXiv:2301.09944.
- Mihalache S., Suzuki S., Terashima Y., Quantum invariants of closed framed 3-manifolds based on ideal triangulations, arXiv:2209.07378.
- Militaru G., Heisenberg double, pentagon equation, structure and classification of finite-dimensional Hopf algebras, J. London Math. Soc. (2) 69 (2004), 44-64, arXiv:math.QA/0009141.
- Moore G., Seiberg N., Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), 177-254.
- Pachner U., P.L. homeomorphic manifolds are equivalent by elementary shellings, European J. Combin. 12 (1991), 129-145.
- Ponzano G., Regge T., Semiclassical limit of Racah coefficients, in Spectroscopic and Group Theoretical Methods in Physics, North-Holland, Amsterdam, 1968, 1-58.
- Rogers L.J., On function sum theorems connected with the series $\sum_{n=1}^\infty \frac{x^n}{n^2}$, Proc. London Math. Soc. (2) 4 (1907), 169-189.
- Sergeev S., On pentagon equation, tetrahedron equation, evolution and integrals of motion, arXiv:2303.17730.
- Skandalis G., Operator algebras and duality, in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Mathematical Society of Japan, Tokyo, 1991, 997-1009.
- Stasheff J., How I 'met' Dov Tamari, in Associahedra, Tamari Lattices and Related Structures, Progr. Math., Vol. 299, Birkhäuser, Basel, 2012, 45-63.
- Stasheff J.D., Homotopy associativity of $H$-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
- Street R., The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987), 283-335.
- Street R., Fusion operators and cocycloids in monoidal categories, Appl. Categ. Structures 6 (1998), 177-191.
- Suzuki S., The universal quantum invariant and colored ideal triangulations, Algebr. Geom. Topol. 18 (2018), 3363-3402, arXiv:1612.08262.
- Takesaki M., Duality and von Neumann algebras, Bull. Amer. Math. Soc. 77 (1971), 553-557.
- Takesaki M., Duality and von Neumann algebras, in Lectures on Operator Algebras, Lecture Notes in Math., Vol. 247, Springer, Berlin, 1972, 665-779.
- Timmermann T., An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond, EMS Textb. Math., European Mathematical Society (EMS), Zürich, 2008.
- Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Stud. Math., Vol. 18, Walter de Gruyter & Co., Berlin, 1994.
- Turaev V.G., Viro O.Ya., State sum invariants of $3$-manifolds and quantum $6j$-symbols, Topology 31 (1992), 865-902.
- Volkov A.Yu., Beyond the ''pentagon identity'', Lett. Math. Phys. 39 (1997), 393-397, arXiv:q-alg/9603003.
- Volkov A.Yu., Pentagon identity revisited, Int. Math. Res. Not. 2012 (2012), 4619-4624, arXiv:1104.2267.
- Williams N.J., The first higher Stasheff-Tamari orders are quotients of the higher Bruhat orders, Electron. J. Combin. 30 (2023), 1.29, 38 pages, arXiv:2012.10371.
- Wirth J., Stasheff J., Homotopy transition cocycles, J. Homotopy Relat. Struct. 1 (2006), 273-283, arXiv:math.AT/0609220.
- Woronowicz S.L., From multiplicative unitaries to quantum groups, Internat. J. Math. 7 (1996), 127-149.
- Zakrzewski S., Poisson Lie groups and pentagonal transformations, Lett. Math. Phys. 24 (1992), 13-19.
|
|