|
SIGMA 20 (2024), 050, 16 pages arXiv:2306.01501
https://doi.org/10.3842/SIGMA.2024.050
A Note on BKP for the Kontsevich Matrix Model with Arbitrary Potential
Gaëtan Borot a and Raimar Wulkenhaar b
a) Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
b) Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
Received January 03, 2024, in final form June 01, 2024; Published online June 11, 2024
Abstract
We exhibit the Kontsevich matrix model with arbitrary potential as a BKP tau-function with respect to polynomial deformations of the potential. The result can be equivalently formulated in terms of Cartan-Plücker relations of certain averages of Schur $Q$-function. The extension of a Pfaffian integration identity of de Bruijn to singular kernels is instrumental in the derivation of the result.
Key words: BKP hierarchy; matrix models; classical integrability.
pdf (482 kb)
tex (24 kb)
References
- Alexandrov A., KdV solves BKP, Proc. Natl. Acad. Sci. USA 118 (2021), e2101917118, 2 pages, arXiv:2012.10448.
- Alexandrov A., Shadrin S., Elements of spin Hurwitz theory: closed algebraic formulas, blobbed topological recursion, and a proof of the Giacchetto-Kramer-Lewański conjecture, Selecta Math. (N.S.) 29 (2023), 26, 44 pages, arXiv:2105.12493.
- Borot G., Eynard B., Orantin N., Abstract loop equations, topological recursion and new applications, Commun. Number Theory Phys. 9 (2015), 51-187, arXiv:1303.5808.
- Borot G., Shadrin S., Blobbed topological recursion: properties and applications, Math. Proc. Cambridge Philos. Soc. 162 (2017), 39-87, arXiv:1502.00981.
- Branahl J., Hock A., Wulkenhaar R., Blobbed topological recursion of the quartic Kontsevich model I: Loop equations and conjectures, Comm. Math. Phys. 393 (2022), 1529-1582, arXiv:2008.12201.
- Date E., Jimbo M., Kashiwara M., Miwa T., Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type, Phys. D 4 (1982), 343-365.
- de Bruijn N.G., On some multiple integrals involving determinants, J. Indian Math. Soc. (N.S.) 19 (1955), 133-151.
- Giacchetto A., Kramer R., Lewanski D., A new spin on Hurwitz theory and ELSV via theta characteristics, arXiv:2104.05697.
- Grosse H., Hock A., Wulkenhaar R., Solution of all quartic matrix models, arXiv:1906.04600.
- Harnad J., Balogh F., Tau functions and their applications, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2021.
- Hock A., Wulkenhaar R., Blobbed topological recursion from extended loop equations, arXiv:2301.04068.
- Isaacson E., Keller H.B., Analysis of numerical methods, Dover Publications, New York, 1994.
- Itzykson C., Zuber J.B., The planar approximation. II, J. Math. Phys. 21 (1980), 411-421.
- Kontsevich M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1-23.
- Liu X., Yang C., Schur ${Q}$-polynomials and Kontsevich-Witten tau function, Peking Math. J., to appear, arXiv:2103.14318.
- Mironov A., Morozov A., Superintegrability of Kontsevich matrix model, Eur. Phys. J. C 81 (2021), 270, 11 pages, arXiv:2011.12917.
- Mironov A., Morozov A., Natanzon S., Orlov A., Around spin Hurwitz numbers, Lett. Math. Phys. 111 (2021), 124, 39 pages, arXiv:2012.09847.
- Nimmo J.J.C., Hall-Littlewood symmetric functions and the BKP equation, J. Phys. A 23 (1990), 751-760.
- Orlov A., Hypergeometric functions associated with Schur $Q$-polynomials, and the BKP equation, Theoret. and Math. Phys. 137 (2003), 1574-1589, arXiv:math-ph/0302011.
- Schur J., Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155-250.
- Schürmann J., Wulkenhaar R., An algebraic approach to a quartic analogue of the Kontsevich model, Math. Proc. Cambridge Philos. Soc. 174 (2023), 471-495, arXiv:1912.03979.
|
|