|
SIGMA 20 (2024), 049, 10 pages arXiv:2403.05464
https://doi.org/10.3842/SIGMA.2024.049
Generalized Yang Poisson Models on Canonical Phase Space
Tea Martinić Bilać a, Stjepan Meljanac b and Salvatore Mignemi cd
a) Faculty of Science, University of Split, Rudera Boškovića 33, 21000 Split, Croatia
b) Division of Theoretical Physics, Ruder Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
c) Dipartimento di Matematica, Università di Cagliari, via Ospedale 72, 09124 Cagliari, Italy
d) INFN, Sezione di Cagliari Cittadella Universitaria, 09042 Monserrato, Italy
Received March 12, 2024, in final form May 29, 2024; Published online June 10, 2024
Abstract
We discuss the generalized Yang Poisson models. We construct generalizations of the Yang Poisson algebra related to $\mathfrak{o}(1,5)$ algebra discussed by Meljanac and Mignemi (2023). The exact realizations of this generalized algebra on canonical phase space are presented and the corresponding differential equations are solved in simple cases. Furthermore, we discuss the Poisson algebras related to $\mathfrak{o}(3,3)$ and $\mathfrak{o}(2,4)$ algebras.
Key words: Yang Poisson model; generalized Yang Poisson model; realizations.
pdf (339 kb)
tex (14 kb)
References
- Banerjee R., Kumar K., Roychowdhury D., Symmetries of Snyder-de Sitter space and relativistic particle dynamics, J. High Energy Phys. 2011 (2011), no. 3, 060, 14 pages, arXiv:1101.2021.
- Born M., Reciprocity theory of elementary particles, Rev. Mod. Phys. 21 (1949), 463-473.
- Guo H.Y., Huang C.G., Wu H.T., Yang's model as triply special relativity and the Snyder's model-de Sitter special relativity duality, Phys. Lett. B 663 (2008), 270-274, arXiv:0801.1146.
- Khrushchev V.V., Leznov A.N., Relativistically invariant Lie algebras for kinematic observables in quantum space-time, Gravit. Cosmol. 9 (2003), 159-162, arXiv:hep-th/0207082.
- Kowalski-Glikman J., Smolin L., Triply special relativity, Phys. Rev. D 70 (2004), 065020, 6 pages, arXiv:hep-th/0406276.
- Lukierski J., Meljanac S., Mignemi S., Pachoł A., Quantum perturbative solutions of extended Snyder and Yang models with spontaneous symmetry breaking, Phys. Lett. B 847 (2023), 138261, 6 pages, arXiv:2212.02316.
- Martinić Bilać T., Meljanac S., Realizations of the extended Snyder model, SIGMA 19 (2023), 065, 11 pages, arXiv:2306.10609.
- Martinić Bilać T., Meljanac S., Mignemi S., Hermitian realizations of the Yang model, J. Math. Phys. 64 (2023), 122302, 9 pages, arXiv:2305.04013.
- Martinić Bilać T., Meljanac S., Mignemi S., Realizations and star-product of doubly $\kappa$-deformed Yang models, arXiv:2404.01792.
- Meljanac S., Mignemi S., Generalizations of Snyder model to curved spaces, Phys. Lett. B 833 (2022), 137289, 6 pages, arXiv:2206.04772.
- Meljanac S., Mignemi S., Noncommutative Yang model and its generalizations, J. Math. Phys. 64 (2023), 023505, 9 pages, arXiv:2211.11755.
- Meljanac S., Mignemi S., Realizations of the Yang-Poisson model on canonical phase space, Internat. J. Modern Phys. A 38 (2023), 2350182, 10 pages, arXiv:2307.09828.
- Meljanac S., Štrajn R., Deformed quantum phase spaces, realizations, star products and twists, SIGMA 18 (2022), 022, 20 pages, arXiv:2112.12038.
- Mignemi S., The Snyder-de Sitter model from six dimensions, Classical Quantum Gravity 26 (2009), 245020, 9 pages, arXiv:0807.2186.
- Mignemi S., Classical and quantum mechanics of the nonrelativistic Snyder model, Phys. Rev. D 84 (2011), 025021, 11 pages, arXiv:1104.0490.
- Mignemi S., Classical and quantum mechanics of the nonrelativistic Snyder model in curved space, Classical Quantum Gravity 29 (2012), 215019, 19 pages, arXiv:1110.0201.
- Snyder H.S., Quantized space-time, Phys. Rev. 71 (1947), 38-41.
- Yang C.N., On quantized space-time, Phys. Rev. 72 (1947), 874.
|
|