Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 047, 70 pages      arXiv:2106.04136      https://doi.org/10.3842/SIGMA.2024.047

Unrestricted Quantum Moduli Algebras, II: Noetherianity and Simple Fraction Rings at Roots of 1

Stéphane Baseilhac and Philippe Roche
IMAG, Univ Montpellier, CNRS, Montpellier, France

Received May 11, 2023, in final form May 07, 2024; Published online June 06, 2024

Abstract
We prove that the quantum graph algebra and the quantum moduli algebra associated to a punctured sphere and complex semisimple Lie algebra $\mathfrak{g}$ are Noetherian rings and finitely generated rings over $\mathbb{C}(q)$. Moreover, we show that these two properties still hold on $\mathbb{C}\big[q,q^{-1}\big]$ for the integral version of the quantum graph algebra. We also study the specializations $\mathcal{L}_{0,n}^\epsilon$ of the quantum graph algebra at a root of unity $\epsilon$ of odd order, and show that $\mathcal{L}_{0,n}^\epsilon$ and its invariant algebra under the quantum group $U_\epsilon(\mathfrak{g})$ have classical fraction algebras which are central simple algebras of PI degrees that we compute.

Key words: quantum groups; invariant theory; character varieties; skein algebras; TQFT.

pdf (1057 kb)   tex (102 kb)  

References

  1. Alekseev A.Yu., Integrability in the Hamiltonian Chern-Simons theory, St. Petersburg Math. J. 6 (1995), 241-253, arXiv:hep-th/9311074.
  2. Alekseev A.Yu., Grosse H., Schomerus V., Combinatorial quantization of the Hamiltonian Chern-Simons theory. I, Comm. Math. Phys. 172 (1995), 317-358, arXiv:hep-th/9403066.
  3. Alekseev A.Yu., Grosse H., Schomerus V., Combinatorial quantization of the Hamiltonian Chern-Simons theory. II, Comm. Math. Phys. 174 (1996), 561-604, arXiv:hep-th/9408097.
  4. Alekseev A.Yu., Schomerus V., Representation theory of Chern-Simons observables, Duke Math. J. 85 (1996), 447-510, arXiv:q-alg/9503016.
  5. Andersen H.H., Polo P., Wen K.X., Representations of quantum algebras, Invent. Math. 104 (1991), 1-59.
  6. Andruskiewitsch N., García G.A., Quantum subgroups of a simple quantum group at roots of $1$, Compos. Math. 145 (2009), 476-500, arXiv:0707.0070.
  7. Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Vol. 64, Addison-Wesley Publishing Co., Reading, Mass., 1969.
  8. Baseilhac S., Quantum coadjoint action and the $6j$-symbols of $U_q{\rm sl}_2$, in Interactions between Hyperbolic Geometry, Quantum Topology and Number Theory, Contemp. Math., Vol. 541, American Mathematical Society, Providence, RI, 2011, 103-143, arXiv:1101.3440.
  9. Baseilhac S., Benedetti R., Quantum hyperbolic invariants of 3-manifolds with ${\rm PSL}(2,\mathbb C)$-characters, Topology 43 (2004), 1373-1423, arXiv:math.GT/0306280.
  10. Baseilhac S., Benedetti R., Classical and quantum dilogarithmic invariants of flat ${\rm PSL}(2,\mathbb C)$-bundles over 3-manifolds, Geom. Topol. 9 (2005), 493-569, arXiv:math.GT/0306283.
  11. Baseilhac S., Benedetti R., Quantum hyperbolic geometry, Algebr. Geom. Topol. 7 (2007), 845-917, arXiv:math.GT/0611504.
  12. Baseilhac S., Benedetti R., The Kashaev and quantum hyperbolic link invariants, J. Gökova Geom. Topol. GGT 5 (2011), 31-85, arXiv:1101.1851.
  13. Baseilhac S., Benedetti R., Analytic families of quantum hyperbolic invariants, Algebr. Geom. Topol. 15 (2015), 1983-2063, arXiv:1212.4261.
  14. Baseilhac S., Benedetti R., Non ambiguous structures on 3-manifolds and quantum symmetry defects, Quantum Topol. 8 (2017), 749-846, arXiv:1506.01174.
  15. Baseilhac S., Benedetti R., On the quantum Teichmüller invariants of fibred cusped 3-manifolds, Geom. Dedicata 197 (2018), 1-32, arXiv:1704.05667.
  16. Baseilhac S., Faitg M., Roche P., Unrestricted quantum moduli algebras, III: surfaces of arbitrary genus and skein algebras, arXiv:2302.00396.
  17. Baseilhac S., Faitg M., Roche P., Structure and representations of quantum moduli and ${\mathfrak g}$-skein algebras at roots of unity, in preparation.
  18. Baseilhac S., Roche P., Unrestricted quantum moduli algebras. I. The case of punctured spheres, SIGMA 18 (2022), 025, 78 pages, arXiv:1912.02440.
  19. Bass H., Algebraic $K$-theory, Math. Lect. Note Ser., W.A. Benjamin, Inc., New York, 1968.
  20. Baumann P., Another proof of Joseph and Letzter's separation of variables theorem for quantum groups, Transform. Groups 5 (2000), 3-20.
  21. Beliakova A., Blanchet C., Geer N., Logarithmic Hennings invariants for restricted quantum $\mathfrak{sl}(2)$, Algebr. Geom. Topol. 18 (2018), 4329-4358, arXiv:1705.03083.
  22. Ben-Zvi D., Brochier A., Jordan D., Quantum character varieties and braided module categories, Selecta Math. (N.S.) 24 (2018), 4711-4748, arXiv:1606.04769.
  23. Bonahon F., Wong H., Quantum traces for representations of surface groups in ${\rm SL}_2(\mathbb C)$, Geom. Topol. 15 (2011), 1569-1615, arXiv:1003.5250.
  24. Bonahon F., Wong H., Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations, Invent. Math. 204 (2016), 195-243, arXiv:1206.1638.
  25. Brown K.A., Couto M., Affine commutative-by-finite Hopf algebras, J. Algebra 573 (2021), 56-94, arXiv:1907.10527.
  26. Brown K.A., Goodearl K.R., Lectures on algebraic quantum groups, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2002.
  27. Brown K.A., Gordon I., The ramifications of the centres: quantised function algebras at roots of unity, Proc. London Math. Soc. 84 (2002), 147-178, arXiv:math.RT/9912042.
  28. Brown K.A., Gordon I., Stafford J.T., $\mathcal{O}_\varepsilon[G]$ is a free module over $\mathcal{O}[G]$, arXiv:math.QA/0007179.
  29. Buffenoir E., Roche P., Two-dimensional lattice gauge theory based on a quantum group, Comm. Math. Phys. 170 (1995), 669-698, arXiv:hep-th/9405126.
  30. Buffenoir E., Roche P., Link invariants and combinatorial quantization of Hamiltonian Chern-Simons theory, Comm. Math. Phys. 181 (1996), 331-365, arXiv:q-alg/9507001.
  31. Buffenoir E., Roche P., Terras V., Quantum dynamical coboundary equation for finite dimensional simple Lie algebras, Adv. Math. 214 (2007), 181-229, arXiv:math.QA/0512500.
  32. Bullock D., A finite set of generators for the Kauffman bracket skein algebra, Math. Z. 231 (1999), 91-101.
  33. Bullock D., Frohman C., Kania-Bartoszyńska J., Topological interpretations of lattice gauge field theory, Comm. Math. Phys. 198 (1998), 47-81, arXiv:q-alg/9710003.
  34. Caldero P., Éléments ad-finis de certains groupes quantiques, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 327-329.
  35. Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
  36. Costantino F., Lê T.T.Q., Stated skein algebras of surfaces, J. Eur. Math. Soc. 24 (2022), 4063-4142, arXiv:1907.11400.
  37. Cui W., Canonical bases of modified quantum algebras for type $A_2$, J. Algebra Appl. 17 (2018), 1850113, 27 pages, arXiv:1208.5531.
  38. Dabrowski L., Reina C., Zampa A., $A({\rm SL}_q(2))$ at roots of unity is a free module over $A({\rm SL}(2))$, Lett. Math. Phys. 52 (2000), 339-342, arXiv:math.QA/0004092.
  39. De Concini C., Kac V.G., Representations of quantum groups at roots of $1$, in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progr. Math., Vol. 92, Birkhäuser, Boston, MA, 1990, 471-506.
  40. De Concini C., Kac V.G., Procesi C., Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), 151-189
  41. De Concini C., Lyubashenko V., Quantum function algebra at roots of $1$, Adv. Math. 108 (1994), 205-262.
  42. De Concini C., Procesi C., Quantum groups, in $D$-modules, Representation Theory, and Quantum Qroups (Venice, 1992), Lecture Notes in Math., Vol. 1565, Springer, Berlin, 1993, 31-140.
  43. de Graaf W.A., Constructing canonical bases of quantized enveloping algebras, Experiment. Math. 11 (2002), 161-170.
  44. De Renzi M., Gainutdinov A.M., Geer N., Patureau-Mirand B., Runkel I., $3$-dimensional TQFTs from non-semisimple modular categories, Selecta Math. (N.S. 28 (2022), 42, 60 pages, arXiv:1912.02063.
  45. De Renzi M., Geer N., Patureau-Mirand B., Renormalized Hennings Invariants and $2+1$-TQFTs, Comm. Math. Phys. 362 (2020), 855-907, arXiv:1707.08044.
  46. Dieudonné J.A., Carrell J.B., Invariant theory, old and new, Adv. Math. 4 (1970), 1-80.
  47. Domokos M., Lenagan T.H., Quantized trace rings, Q. J. Math. 56 (2005), 507-523, arXiv:math.QA/0407053.
  48. Drinfeld V.G., On almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990), 321-342.
  49. Du J., Global IC bases for quantum linear groups, J. Pure Appl. Algebra 114 (1996), 25-37.
  50. Enriquez B., Le centre des algébres de coordonnées des groupes quantiques aux racines $p^\alpha$-iémes de l'unité, Bull. Soc. Math. France 122 (1994), 443-485.
  51. Etingof P., Golberg O., Hensel S., Liu T., Schwendner A., Vaintrob D., Yudovina E., Introduction to representation theory, Stud. Math. Libr., Vol. 59, American Mathematical Society, Providence, RI, 2011, arXiv:0901.0827.
  52. Faitg M., Mapping class groups, skein algebras and combinatorial quantization, Ph.D. Thesis, Montpellier de Université, 2019, arXiv:1910.04110.
  53. Faitg M., Projective representations of mapping class groups in combinatorial quantization, Comm. Math. Phys. 377 (2020), 161-198, arXiv:1812.00446.
  54. Faitg M., Holonomy and (stated) skein algebras in combinatorial quantization, Quantum Topol., to appear, arXiv:2003.08992.
  55. Fock V.V., Rosly A.A., Poisson structure on moduli of flat connections on Riemann surfaces and the $r$-matrix, in Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser., Vol. 191, American Mathematical Society, Providence, RI, 1999, 67-86, arXiv:math.QA/9802054.
  56. Frenkel I.B., Khovanov M.G., Canonical bases in tensor products and graphical calculus for $U_q(\mathfrak{sl}_2)$, Duke Math. J. 87 (1997), 409-480.
  57. Frohman C., Kania-Bartoszynska J., Lê T., Unicity for representations of the Kauffman bracket skein algebra, Invent. Math. 215 (2019), 609-650, arXiv:1707.09234.
  58. Ganev I., Jordan D., Safronov P., The quantum Frobenius for character varieties and multiplicative quiver varieties, J. Eur. Math. Soc., to appear, arXiv:1901.11450.
  59. Humphreys J.E., Linear algebraic groups, Grad. Texts Math., Vol. 21, Springer, New York, 1975.
  60. Jordan D., White N., The center of the reflection equation algebra via quantum minors, J. Algebra 542 (2020), 308-342, arXiv:1709.09149.
  61. Joseph A., Quantum groups and their primitive ideals, Ergeb. Math. Grenzgeb. (3), Vol. 29, Springer, Berlin, 1995.
  62. Joseph A., Letzter G., Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra 153 (1992), 289-318.
  63. Joseph A., Letzter G., Separation of variables for quantized enveloping algebras, Amer. J. Math. 116 (1994), 127-177.
  64. Karuo H., Korinman J., Classification of semi-weight representations of reduced stated skein algebras, arXiv:2303.09433.
  65. Kashiwara M., On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516.
  66. Kashiwara M., Global crystal bases of quantum groups, Duke Math. J. 69 (1993), 455-485.
  67. Kashiwara M., Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383-413.
  68. Kashiwara M., On crystal bases, in Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., Vol. 16, American Mathematical Society, Providence, RI, 1995, 155-197.
  69. Khoroshkin S.M., Tolstoy V.N., Universal $R$-matrix for quantized (super)algebras, Comm. Math. Phys. 141 (1991), 599-617.
  70. Kirillov A.N., Reshetikhin N., $q$-Weyl group and a multiplicative formula for universal $R$-matrices, Comm. Math. Phys. 134 (1990), 421-431.
  71. Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts Monogr. Phys., Springer, Berlin, 1997.
  72. Kolb S., Lorenz M., Nguyen B., Yammine R., On the adjoint representation of a Hopf algebra, Proc. Edinb. Math. Soc. 63 (2020), 1092-1099, arXiv:1905.03020.
  73. Korinman J., Unicity for representations of reduced stated skein algebras, Topology Appl. 293 (2021), 107570, 28 pages, arXiv:2001.00969.
  74. Korinman J., Finite presentations for stated skein algebras and lattice gauge field theory, Algebr. Geom. Topol. 23 (2023), 1249-1302, arXiv:2012.03237.
  75. Korinman J., Quesney A., Classical shadows of stated skein representations at odd roots of unity, arXiv:1905.03441.
  76. Kostant B., Groups over $Z$, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), American Mathematical Society, Providence, RI, 1966, 90-98.
  77. Lang S., Algebraic structures, Addison-Wesley Publishing Co., Reading, Mass., 1967.
  78. Lê T.T.Q., Triangular decomposition of skein algebras, Quantum Topol. 9 (2018), 591-632, arXiv:1609.04987.
  79. Lê T.T.Q., Sikora A.S., Stated ${\rm SL}(n)$-skein modules and algebras, arXiv:2201.00045.
  80. Lê T.T.Q., Yu T., Quantum traces and embeddings of stated skein algebras into quantum tori, Selecta Math. (N.S.) 28 (2022), 66, 48 pages, arXiv:2012.15272.
  81. Levendorskii S.Z., Soibelman Y.S., Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990), 241-254.
  82. Lusztig G., Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), 89-113.
  83. Lusztig G., Introduction to quantum groups, Mod. Birkhäuser Class., Vol. 110, Birkhäuser, Boston, MA, 1993.
  84. Lusztig G., Study of a $\mathbb{Z}$-form of the coordinate ring of a reductive group, J. Amer. Math. Soc. 22 (2009), 739-769.
  85. Lyubashenko V., Majid S., Braided groups and quantum Fourier transform, J. Algebra 166 (1994), 506-528.
  86. Majid S., Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group, Comm. Math. Phys. 156 (1993), 607-638, arXiv:hep-th/9208008.
  87. Marlin R., Anneaux de Grothendieck des variétés de drapeaux, Bull. Soc. Math. France 104 (1976), 337-348.
  88. McConnell J.C., Robson J.C., Noncommutative Noetherian rings, Grad. Stud. Math., Vol. 30, American Mathematical Society, Providence, RI, 2001.
  89. Meusburger C., Kitaev lattice models as a Hopf algebra gauge theory, Comm. Math. Phys. 353 (2017), 413-468, arXiv:1607.01144.
  90. Murakami J., Generalized Kashaev invariants for knots in three manifolds, Quantum Topol. 8 (2017), 35-73, arXiv:1312.0330.
  91. Paradowski J., Filtrations of modules over the quantum algebra, in Algebraic Groups and their Generalizations: Quantum and Infinite-Dimensional Methods (University Park, PA, 1991), Proc. Sympos. Pure Math., Vol. 56, American Mathematical Society, Providence, RI, 1994, 93-108.
  92. Parshall B., Wang J.P., Quantum linear groups, Mem. Amer. Math. Soc. 89 (1991), vi+157 pages.
  93. Przytycki J.H., Sikora A.S., Skein algebras of surfaces, Trans. Amer. Math. Soc. 371 (2019), 1309-1332, arXiv:1602.07402.
  94. Reshetikhin N.Yu., Semenov-Tian-Shansky M.A., Quantum $R$-matrices and factorization problems, J. Geom. Phys. 5 (1988), 533-550 (1989).
  95. Reshetikhin N.Yu., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  96. Rowen L.H., Ring theory, Academic Press, Inc., Boston, MA, 1991.
  97. Saito Y., PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci. 30 (1994), 209-232.
  98. Soibelman Y.S., Algebra of functions on a compact quantum group and its representations, Leningrad Math. J. 2 (1990), 161-268.
  99. Springer T.A., Invariant theory, Lect. Notes in Math., Vol. 585, Springer, Berlin, 1977.
  100. The Stacks Project Authors, Commutative Alg, The Stack Project, Chapter 10, available at https://stacks.math.columbia.edu.
  101. The Stacks Project Authors, Brauer groups, The Stack Project, Chapter 11, available at https://stacks.math.columbia.edu.
  102. Vaksman L.L., Soibelman Y.S., Algebra of functions on the quantum group ${\rm SU}(2)$, Funct. Anal. Appl. 22 (1988), 170-181.
  103. Varagnolo M., Vasserot E., Double affine Hecke algebras at roots of unity, Represent. Theory 14 (2010), 510-600, arXiv:math.RT/0603744.
  104. Voigt C., Yuncken R., Complex semisimple quantum groups and representation theory, Lect. Notes in Math., Vol. 2264, Springer, Cham, 2020.
  105. Wang Z., On stated ${\rm SL}(n)$-skein modules, arXiv:2307.10288.
  106. Witten E., Topological quantum field theory, Comm. Math. Phys. 117 (1988), 353-386.
  107. Xi N.H., Root vectors in quantum groups, Comment. Math. Helv. 69 (1994), 612-639.

Previous article  Next article  Contents of Volume 20 (2024)