|
SIGMA 20 (2024), 047, 70 pages arXiv:2106.04136
https://doi.org/10.3842/SIGMA.2024.047
Unrestricted Quantum Moduli Algebras, II: Noetherianity and Simple Fraction Rings at Roots of 1
Stéphane Baseilhac and Philippe Roche
IMAG, Univ Montpellier, CNRS, Montpellier, France
Received May 11, 2023, in final form May 07, 2024; Published online June 06, 2024
Abstract
We prove that the quantum graph algebra and the quantum moduli algebra associated to a punctured sphere and complex
semisimple Lie algebra $\mathfrak{g}$ are Noetherian rings and finitely generated rings over $\mathbb{C}(q)$. Moreover,
we show that these two properties still hold on $\mathbb{C}\big[q,q^{-1}\big]$ for the integral version of the quantum graph algebra.
We also study the specializations $\mathcal{L}_{0,n}^\epsilon$ of the quantum graph algebra at a root of unity $\epsilon$ of odd order,
and show that $\mathcal{L}_{0,n}^\epsilon$ and its invariant algebra under the quantum group $U_\epsilon(\mathfrak{g})$ have classical
fraction algebras which are central simple algebras of PI degrees that we compute.
Key words: quantum groups; invariant theory; character varieties; skein algebras; TQFT.
pdf (1057 kb)
tex (102 kb)
References
- Alekseev A.Yu., Integrability in the Hamiltonian Chern-Simons theory, St. Petersburg Math. J. 6 (1995), 241-253, arXiv:hep-th/9311074.
- Alekseev A.Yu., Grosse H., Schomerus V., Combinatorial quantization of the Hamiltonian Chern-Simons theory. I, Comm. Math. Phys. 172 (1995), 317-358, arXiv:hep-th/9403066.
- Alekseev A.Yu., Grosse H., Schomerus V., Combinatorial quantization of the Hamiltonian Chern-Simons theory. II, Comm. Math. Phys. 174 (1996), 561-604, arXiv:hep-th/9408097.
- Alekseev A.Yu., Schomerus V., Representation theory of Chern-Simons observables, Duke Math. J. 85 (1996), 447-510, arXiv:q-alg/9503016.
- Andersen H.H., Polo P., Wen K.X., Representations of quantum algebras, Invent. Math. 104 (1991), 1-59.
- Andruskiewitsch N., García G.A., Quantum subgroups of a simple quantum group at roots of $1$, Compos. Math. 145 (2009), 476-500, arXiv:0707.0070.
- Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Vol. 64, Addison-Wesley Publishing Co., Reading, Mass., 1969.
- Baseilhac S., Quantum coadjoint action and the $6j$-symbols of $U_q{\rm sl}_2$, in Interactions between Hyperbolic Geometry, Quantum Topology and Number Theory, Contemp. Math., Vol. 541, American Mathematical Society, Providence, RI, 2011, 103-143, arXiv:1101.3440.
- Baseilhac S., Benedetti R., Quantum hyperbolic invariants of 3-manifolds with ${\rm PSL}(2,\mathbb C)$-characters, Topology 43 (2004), 1373-1423, arXiv:math.GT/0306280.
- Baseilhac S., Benedetti R., Classical and quantum dilogarithmic invariants of flat ${\rm PSL}(2,\mathbb C)$-bundles over 3-manifolds, Geom. Topol. 9 (2005), 493-569, arXiv:math.GT/0306283.
- Baseilhac S., Benedetti R., Quantum hyperbolic geometry, Algebr. Geom. Topol. 7 (2007), 845-917, arXiv:math.GT/0611504.
- Baseilhac S., Benedetti R., The Kashaev and quantum hyperbolic link invariants, J. Gökova Geom. Topol. GGT 5 (2011), 31-85, arXiv:1101.1851.
- Baseilhac S., Benedetti R., Analytic families of quantum hyperbolic invariants, Algebr. Geom. Topol. 15 (2015), 1983-2063, arXiv:1212.4261.
- Baseilhac S., Benedetti R., Non ambiguous structures on 3-manifolds and quantum symmetry defects, Quantum Topol. 8 (2017), 749-846, arXiv:1506.01174.
- Baseilhac S., Benedetti R., On the quantum Teichmüller invariants of fibred cusped 3-manifolds, Geom. Dedicata 197 (2018), 1-32, arXiv:1704.05667.
- Baseilhac S., Faitg M., Roche P., Unrestricted quantum moduli algebras, III: surfaces of arbitrary genus and skein algebras, arXiv:2302.00396.
- Baseilhac S., Faitg M., Roche P., Structure and representations of quantum moduli and ${\mathfrak g}$-skein algebras at roots of unity, in preparation.
- Baseilhac S., Roche P., Unrestricted quantum moduli algebras. I. The case of punctured spheres, SIGMA 18 (2022), 025, 78 pages, arXiv:1912.02440.
- Bass H., Algebraic $K$-theory, Math. Lect. Note Ser., W.A. Benjamin, Inc., New York, 1968.
- Baumann P., Another proof of Joseph and Letzter's separation of variables theorem for quantum groups, Transform. Groups 5 (2000), 3-20.
- Beliakova A., Blanchet C., Geer N., Logarithmic Hennings invariants for restricted quantum $\mathfrak{sl}(2)$, Algebr. Geom. Topol. 18 (2018), 4329-4358, arXiv:1705.03083.
- Ben-Zvi D., Brochier A., Jordan D., Quantum character varieties and braided module categories, Selecta Math. (N.S.) 24 (2018), 4711-4748, arXiv:1606.04769.
- Bonahon F., Wong H., Quantum traces for representations of surface groups in ${\rm SL}_2(\mathbb C)$, Geom. Topol. 15 (2011), 1569-1615, arXiv:1003.5250.
- Bonahon F., Wong H., Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations, Invent. Math. 204 (2016), 195-243, arXiv:1206.1638.
- Brown K.A., Couto M., Affine commutative-by-finite Hopf algebras, J. Algebra 573 (2021), 56-94, arXiv:1907.10527.
- Brown K.A., Goodearl K.R., Lectures on algebraic quantum groups, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2002.
- Brown K.A., Gordon I., The ramifications of the centres: quantised function algebras at roots of unity, Proc. London Math. Soc. 84 (2002), 147-178, arXiv:math.RT/9912042.
- Brown K.A., Gordon I., Stafford J.T., $\mathcal{O}_\varepsilon[G]$ is a free module over $\mathcal{O}[G]$, arXiv:math.QA/0007179.
- Buffenoir E., Roche P., Two-dimensional lattice gauge theory based on a quantum group, Comm. Math. Phys. 170 (1995), 669-698, arXiv:hep-th/9405126.
- Buffenoir E., Roche P., Link invariants and combinatorial quantization of Hamiltonian Chern-Simons theory, Comm. Math. Phys. 181 (1996), 331-365, arXiv:q-alg/9507001.
- Buffenoir E., Roche P., Terras V., Quantum dynamical coboundary equation for finite dimensional simple Lie algebras, Adv. Math. 214 (2007), 181-229, arXiv:math.QA/0512500.
- Bullock D., A finite set of generators for the Kauffman bracket skein algebra, Math. Z. 231 (1999), 91-101.
- Bullock D., Frohman C., Kania-Bartoszyńska J., Topological interpretations of lattice gauge field theory, Comm. Math. Phys. 198 (1998), 47-81, arXiv:q-alg/9710003.
- Caldero P., Éléments ad-finis de certains groupes quantiques, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 327-329.
- Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
- Costantino F., Lê T.T.Q., Stated skein algebras of surfaces, J. Eur. Math. Soc. 24 (2022), 4063-4142, arXiv:1907.11400.
- Cui W., Canonical bases of modified quantum algebras for type $A_2$, J. Algebra Appl. 17 (2018), 1850113, 27 pages, arXiv:1208.5531.
- Dabrowski L., Reina C., Zampa A., $A({\rm SL}_q(2))$ at roots of unity is a free module over $A({\rm SL}(2))$, Lett. Math. Phys. 52 (2000), 339-342, arXiv:math.QA/0004092.
- De Concini C., Kac V.G., Representations of quantum groups at roots of $1$, in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progr. Math., Vol. 92, Birkhäuser, Boston, MA, 1990, 471-506.
- De Concini C., Kac V.G., Procesi C., Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), 151-189
- De Concini C., Lyubashenko V., Quantum function algebra at roots of $1$, Adv. Math. 108 (1994), 205-262.
- De Concini C., Procesi C., Quantum groups, in $D$-modules, Representation Theory, and Quantum Qroups (Venice, 1992), Lecture Notes in Math., Vol. 1565, Springer, Berlin, 1993, 31-140.
- de Graaf W.A., Constructing canonical bases of quantized enveloping algebras, Experiment. Math. 11 (2002), 161-170.
- De Renzi M., Gainutdinov A.M., Geer N., Patureau-Mirand B., Runkel I., $3$-dimensional TQFTs from non-semisimple modular categories, Selecta Math. (N.S. 28 (2022), 42, 60 pages, arXiv:1912.02063.
- De Renzi M., Geer N., Patureau-Mirand B., Renormalized Hennings Invariants and $2+1$-TQFTs, Comm. Math. Phys. 362 (2020), 855-907, arXiv:1707.08044.
- Dieudonné J.A., Carrell J.B., Invariant theory, old and new, Adv. Math. 4 (1970), 1-80.
- Domokos M., Lenagan T.H., Quantized trace rings, Q. J. Math. 56 (2005), 507-523, arXiv:math.QA/0407053.
- Drinfeld V.G., On almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990), 321-342.
- Du J., Global IC bases for quantum linear groups, J. Pure Appl. Algebra 114 (1996), 25-37.
- Enriquez B., Le centre des algébres de coordonnées des groupes quantiques aux racines $p^\alpha$-iémes de l'unité, Bull. Soc. Math. France 122 (1994), 443-485.
- Etingof P., Golberg O., Hensel S., Liu T., Schwendner A., Vaintrob D., Yudovina E., Introduction to representation theory, Stud. Math. Libr., Vol. 59, American Mathematical Society, Providence, RI, 2011, arXiv:0901.0827.
- Faitg M., Mapping class groups, skein algebras and combinatorial quantization, Ph.D. Thesis, Montpellier de Université, 2019, arXiv:1910.04110.
- Faitg M., Projective representations of mapping class groups in combinatorial quantization, Comm. Math. Phys. 377 (2020), 161-198, arXiv:1812.00446.
- Faitg M., Holonomy and (stated) skein algebras in combinatorial quantization, Quantum Topol., to appear, arXiv:2003.08992.
- Fock V.V., Rosly A.A., Poisson structure on moduli of flat connections on Riemann surfaces and the $r$-matrix, in Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser., Vol. 191, American Mathematical Society, Providence, RI, 1999, 67-86, arXiv:math.QA/9802054.
- Frenkel I.B., Khovanov M.G., Canonical bases in tensor products and graphical calculus for $U_q(\mathfrak{sl}_2)$, Duke Math. J. 87 (1997), 409-480.
- Frohman C., Kania-Bartoszynska J., Lê T., Unicity for representations of the Kauffman bracket skein algebra, Invent. Math. 215 (2019), 609-650, arXiv:1707.09234.
- Ganev I., Jordan D., Safronov P., The quantum Frobenius for character varieties and multiplicative quiver varieties, J. Eur. Math. Soc., to appear, arXiv:1901.11450.
- Humphreys J.E., Linear algebraic groups, Grad. Texts Math., Vol. 21, Springer, New York, 1975.
- Jordan D., White N., The center of the reflection equation algebra via quantum minors, J. Algebra 542 (2020), 308-342, arXiv:1709.09149.
- Joseph A., Quantum groups and their primitive ideals, Ergeb. Math. Grenzgeb. (3), Vol. 29, Springer, Berlin, 1995.
- Joseph A., Letzter G., Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra 153 (1992), 289-318.
- Joseph A., Letzter G., Separation of variables for quantized enveloping algebras, Amer. J. Math. 116 (1994), 127-177.
- Karuo H., Korinman J., Classification of semi-weight representations of reduced stated skein algebras, arXiv:2303.09433.
- Kashiwara M., On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516.
- Kashiwara M., Global crystal bases of quantum groups, Duke Math. J. 69 (1993), 455-485.
- Kashiwara M., Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383-413.
- Kashiwara M., On crystal bases, in Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., Vol. 16, American Mathematical Society, Providence, RI, 1995, 155-197.
- Khoroshkin S.M., Tolstoy V.N., Universal $R$-matrix for quantized (super)algebras, Comm. Math. Phys. 141 (1991), 599-617.
- Kirillov A.N., Reshetikhin N., $q$-Weyl group and a multiplicative formula for universal $R$-matrices, Comm. Math. Phys. 134 (1990), 421-431.
- Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts Monogr. Phys., Springer, Berlin, 1997.
- Kolb S., Lorenz M., Nguyen B., Yammine R., On the adjoint representation of a Hopf algebra, Proc. Edinb. Math. Soc. 63 (2020), 1092-1099, arXiv:1905.03020.
- Korinman J., Unicity for representations of reduced stated skein algebras, Topology Appl. 293 (2021), 107570, 28 pages, arXiv:2001.00969.
- Korinman J., Finite presentations for stated skein algebras and lattice gauge field theory, Algebr. Geom. Topol. 23 (2023), 1249-1302, arXiv:2012.03237.
- Korinman J., Quesney A., Classical shadows of stated skein representations at odd roots of unity, arXiv:1905.03441.
- Kostant B., Groups over $Z$, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), American Mathematical Society, Providence, RI, 1966, 90-98.
- Lang S., Algebraic structures, Addison-Wesley Publishing Co., Reading, Mass., 1967.
- Lê T.T.Q., Triangular decomposition of skein algebras, Quantum Topol. 9 (2018), 591-632, arXiv:1609.04987.
- Lê T.T.Q., Sikora A.S., Stated ${\rm SL}(n)$-skein modules and algebras, arXiv:2201.00045.
- Lê T.T.Q., Yu T., Quantum traces and embeddings of stated skein algebras into quantum tori, Selecta Math. (N.S.) 28 (2022), 66, 48 pages, arXiv:2012.15272.
- Levendorskii S.Z., Soibelman Y.S., Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990), 241-254.
- Lusztig G., Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), 89-113.
- Lusztig G., Introduction to quantum groups, Mod. Birkhäuser Class., Vol. 110, Birkhäuser, Boston, MA, 1993.
- Lusztig G., Study of a $\mathbb{Z}$-form of the coordinate ring of a reductive group, J. Amer. Math. Soc. 22 (2009), 739-769.
- Lyubashenko V., Majid S., Braided groups and quantum Fourier transform, J. Algebra 166 (1994), 506-528.
- Majid S., Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group, Comm. Math. Phys. 156 (1993), 607-638, arXiv:hep-th/9208008.
- Marlin R., Anneaux de Grothendieck des variétés de drapeaux, Bull. Soc. Math. France 104 (1976), 337-348.
- McConnell J.C., Robson J.C., Noncommutative Noetherian rings, Grad. Stud. Math., Vol. 30, American Mathematical Society, Providence, RI, 2001.
- Meusburger C., Kitaev lattice models as a Hopf algebra gauge theory, Comm. Math. Phys. 353 (2017), 413-468, arXiv:1607.01144.
- Murakami J., Generalized Kashaev invariants for knots in three manifolds, Quantum Topol. 8 (2017), 35-73, arXiv:1312.0330.
- Paradowski J., Filtrations of modules over the quantum algebra, in Algebraic Groups and their Generalizations: Quantum and Infinite-Dimensional Methods (University Park, PA, 1991), Proc. Sympos. Pure Math., Vol. 56, American Mathematical Society, Providence, RI, 1994, 93-108.
- Parshall B., Wang J.P., Quantum linear groups, Mem. Amer. Math. Soc. 89 (1991), vi+157 pages.
- Przytycki J.H., Sikora A.S., Skein algebras of surfaces, Trans. Amer. Math. Soc. 371 (2019), 1309-1332, arXiv:1602.07402.
- Reshetikhin N.Yu., Semenov-Tian-Shansky M.A., Quantum $R$-matrices and factorization problems, J. Geom. Phys. 5 (1988), 533-550 (1989).
- Reshetikhin N.Yu., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
- Rowen L.H., Ring theory, Academic Press, Inc., Boston, MA, 1991.
- Saito Y., PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci. 30 (1994), 209-232.
- Soibelman Y.S., Algebra of functions on a compact quantum group and its representations, Leningrad Math. J. 2 (1990), 161-268.
- Springer T.A., Invariant theory, Lect. Notes in Math., Vol. 585, Springer, Berlin, 1977.
- The Stacks Project Authors, Commutative Alg, The Stack Project, Chapter 10, available at https://stacks.math.columbia.edu.
- The Stacks Project Authors, Brauer groups, The Stack Project, Chapter 11, available at https://stacks.math.columbia.edu.
- Vaksman L.L., Soibelman Y.S., Algebra of functions on the quantum group ${\rm SU}(2)$, Funct. Anal. Appl. 22 (1988), 170-181.
- Varagnolo M., Vasserot E., Double affine Hecke algebras at roots of unity, Represent. Theory 14 (2010), 510-600, arXiv:math.RT/0603744.
- Voigt C., Yuncken R., Complex semisimple quantum groups and representation theory, Lect. Notes in Math., Vol. 2264, Springer, Cham, 2020.
- Wang Z., On stated ${\rm SL}(n)$-skein modules, arXiv:2307.10288.
- Witten E., Topological quantum field theory, Comm. Math. Phys. 117 (1988), 353-386.
- Xi N.H., Root vectors in quantum groups, Comment. Math. Helv. 69 (1994), 612-639.
|
|