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Abstract. We develop the algebraic approach to duality, more precisely to intertwinings,
within the context of particle systems in general spaces, focusing on the su(1, 1) current
algebra. We introduce raising, lowering, and neutral operators indexed by test functions
and we use them to construct unitary operators, which act as self-intertwiners for some
Markov processes having the Pascal process’s law as a reversible measure. We show that
such unitaries relate to generalized Meixner polynomials. Our primary results are continuum
counterparts of results in the discrete setting obtained by Carinci, Franceschini, Giardinà,
Groenevelt, and Redig (2019).
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1 Introduction

In recent years the algebraic approach to duality has been developed in the context of interact-
ing particle systems (see, e.g., [42] for a review). Stochastic duality is a tool that connects two
Markov processes via an observable of both processes (the duality function): The relation then
tells that the expected evolution of such observable with respect to one Markovian dynamics is
equal to the expected evolution with respect to a second one, for any time and initial conditions.
When the two processes have the same semigroup, we speak of self-duality. Duality becomes
relevant when one of the two processes is easier to be studied and the duality function is a mean-
ingful observable for the other process. In the particular case of self-duality, the simplification
may arise by a simpler initial condition in the dual process.

Stochastic duality has been used in various contexts, such as interacting particle systems (see,
e.g., [28]), population genetics models (see, e.g., [13]), (stochastic) partial differential equations
(see, e.g., [34]). However, finding duality relations is not easy. The algebraic approach provides
a structured way to find duality functions; for several processes, duality relations have been
found only via the algebraic approach (see, e.g., [10, 11, 24, 25]). So far, the algebraic approach
to duality has been developed only in the case of particles hopping on discrete spaces. The
basic idea of the algebraic approach is as follows: Write the generator of the Markov process
as a sum of single edge-generators describing the dynamics of particles among the edges of the
underlying graph. Then, identify an underlying Lie algebra such that the single edge-generators
are elements of the universal enveloping algebra in a given representation. One can then exploit
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the commutation relations of the Lie algebra to find symmetries of the generator. This procedure
was applied by Carinci, Franceschini, Giardinà, Groenevelt and Redig in the context of self-
duality functions for independent random walkers, the symmetric exclusion process and the
symmetric inclusion process. For the latter process, a self-duality relation in terms of Meixner
polynomials was recovered, which first appeared in [18].

In fact, the very notion of self-duality in the continuum is not trivial and only recently
a generalization for particles on a Polish space, where the concept of self-duality is replaced by
the one of self-intertwining, has been developed by the authors together with F. Redig. In [15],
we formulated self-intertwining relations with respect to infinite-dimensional orthogonal and
falling factorial polynomials. In particular, we used the modern language of point processes,
see, e.g., [26], identifying the particle system with an evolving counting measure and intriguing
relations were found with the literature of chaos decomposition and extended Fock spaces in
infinite dimensions (see, e.g., [30]).

In the present article, we extend the algebraic approach to the continuum, in the context
of the su(1, 1) algebra. To that aim we first introduce raising, lowering and neutral operators
indexed by test functions rather than (lattice) sites and use them to define a family of unitary
operators U(ξ, θ), indexed by parameters ξ ∈ C and θ ∈ R, in a suitable L2 space of finite
counting measures (Section 2.3). The reference measure ρp,α is the law of a Pascal point process
or negative binomial process (Section 2.2). It is the continuum counterpart to the product of
negative binomial laws, one for each lattice site, for interacting particle systems on a lattice.
Families of operators indexed by functions are standard, e.g., for the canonical commutation
relations for bosons in quantum many-body mechanics or quantum field theory [37, Section X.7];
they also appear in connection with current algebras and quantum probability [1, 3]. We leave
a thorough analysis of the algebraic setting to a companion article [16] but mention already that
our raising and lowering operators are closely related to operators studied for infinite-dimensional
orthogonal polynomials [30] and to representations of the algebra of the square of white noise,
the current algebra of sl(2,R), and the finite difference algebra [2, 6, 41].

We prove that the unitaries U(ξ, θ) belong to the symmetry group of consistent Markov
processes that admit the law of the Pascal process as a reversible measure (Theorem 2.3). Put
differently, each of these unitaries is a self-intertwiner for the semigroup: U(ξ, θ)Pt = PtU(ξ, θ).
Consistency roughly means that random removal of a particle and time evolution commute [9].
Theorem 2.3 applies in particular to the generalized symmetric inclusion process and thereby
generalizes to the continuum item 1 (i) in [7, Theorem 3.1].

For a concrete choice of the parameters ξ and θ, the unitary U(ξ, θ) maps functions supported
on n-particle configurations to generalized Meixner polynomials of degree n (Theorem 2.4), up
to proportionality constants. This result generalizes item 1 (ii) in [7, Theorem 3.1]. As a by-
product to Theorems 2.3 and 2.4, we obtain a new algebraic proof of a self-intertwining relation
proven by F. Redig and us in [15], see Corollary 2.5. Our results are complemented by some
considerations on how to rewrite infinitesimal generators with our raising, lowering and neutral
operators (Section 2.6).

We treat only systems with finitely many particles. However, let us briefly remark on Markov
processes with infinitely many particles. Usually the duality is between on the one hand a process
with possibly infinitely many particles and on the other hand the same process but with finitely
many particles [28, Section III.4]. Accordingly our unitary self-intertwining is replaced with
a unitary operator from a Hilbert space for finitely many particles onto a Hilbert space for
infinitely many particles. The first Hilbert space may be chosen as an extended Fock space,
the second Hilbert space is still an L2 space with respect to a Pascal law with infinite mass
α(E) = ∞, and the unitary operator is the isomorphism from chaos decompositions for the
Pascal point process [29, Corollary 5.3]. Such an intertwining relation is proven for sticky
Brownian motions in [44, Theorem 3.5].
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We should emphasize that our method also applies to consistent Markov processes that have
a Poisson law as a reversible measure instead of a Pascal law. The relevant algebra is the Heisen-
berg algebra, the raising, lowering and neutral operators are replaced with creation, annihilation
and number operators, and Charlier polynomials take the place of Meixner polynomials. The
outcome is a generalization of item 3 in Theorem 3.1 from Carinci et al. [7]. Creation and
annihilation operators in the continuum are well known in the context of many-body quantum
mechanics [37]; this is why we focus our presentation on su(1, 1).

In contrast, our method does not apply to the SU(2) symmetry and Krawtchouk polynomials
relevant for exclusion processes [7]. We use a reference measure on configurations with respect
to which raising and lowering operators are dual, and that reference measure should be infinitely
divisible. Poisson and negative binomial laws are infinitely divisible and thus have natural Lévy
processes or fields as continuum counterparts. Bernoulli and binomial laws are not infinitely
divisible and it is not clear what the associated continuum random field should be.

The article is organized as follows. We introduce the space of finite counting measures, the
Pascal law, and the lowering, raising and neutral operators and then we present our main results.
All this is done in Section 2. In Section 3, we give a Papangelou kernel for the Pascal point
process and apply it to prove that raising and lowering operators are adjoint to each other.
Theorems 2.3 and 2.4 are proven in Sections 4 and 5, respectively. Finally, Appendix A gathers
some known formulas on univariate Meixner polynomials.

2 Setting and main results

In the following, Cartesian products are always equipped with product σ-algebras. For finite
interacting particle systems on lattices, the configuration space is NΛ

0 = {(nx)x∈Λ : nx ∈ N0} with
Λ ⊂ Zd. We replace NΛ

0 with a space of finite counting measures: Let (E, E) be a Borel space,
for example, E = Rd or more generally a Polish space with its Borel σ-algebra. Let N<∞ be the
space of finite counting measures on E. Every element η ∈ N<∞ is either zero or a finite sum
η = δx1 + · · ·+ δxn of Dirac measures, where x1, . . . , xn ∈ E, n ∈ N. The space N<∞ is equipped
with the σ-algebra N<∞ generated by the counting variables η 7→ η(B), B ∈ E . For background
on point processes and counting measures, we refer the reader to Last and Penrose [27].

2.1 Symmetric inclusion process

We are interested in Markov processes with state space N<∞. As a guiding example we take
the process with formal generator

Lf(η) =

∫∫ (
f(η − δx + δy)− f(η)

)
c(x, y)η(dx)

(
α+ η

)
(dy), (2.1)

where α is a finite measure on E and c : E × E → R+ is a bounded measurable function with
c(x, y) = c(y, x) on E2. In [15] we called this process generalized inclusion process. When E is
a finite set, we may identify finite counting measures η with vectors n = (nx)x∈Λ ∈ NΛ

0 , integrals
over E turn into sums, and the generator turns into

Lf(n) =
∑

x,y∈E

(
f(n− ex + ey)− f(n)

)
c(x, y)nx(αy + ny), (2.2)

where ex(y) = δx,y and αy = α({y}). This is the generator of the inhomogeneous symmetric
inclusion process (see, e.g., [17, equation (2.2)]), which first appeared in the homogeneous case
as a dual process to a model for energy and momentum transport, see [20] and references therein.

When c(x, y) is the constant function with value 1, the process corresponds to the Moran
process from mathematical population genetics–classical Moran model [21, 33] when E is finite,
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measure-valued Moran model (see [12, Section 2.6] or [14, Section 5.4]) when E is uncountable.
The Moran model describes a population in which individuals have genetic types x ∈ E that
may mutate or evolve by sampling replacement (death of an individual followed by replacement
with the offspring of another individual).

For the homogeneous symmetric inclusion process with finite state space / Moran model with
finite type space, the correspondence was already noticed in [8, Section 5]. For uncountable
state spaces, we notice that the n-particle dynamics of the process generated by (2.1) (with
c(x, y) ≡ 1) coincides with the n-particle Moran model [12, equation (2.5.2)] with so-called
mutation operator Aφ(x) =

∫
(φ(y)− φ(x))α(dx). Our process for counting measures is similar

to the measure-valued Moran model. The only difference is in bookkeeping: In mathematical
population genetics, the population is often modeled not with η ∈ N<∞ but rather with the
empirical measure η

η(E) . This is helpful for scaling limits in which the population size goes to

infinity, notably Fleming–Viot limits, which are important in population genetics (see [40] and
references therein).

2.2 Pascal point process

The symmetric inclusion process with generator (2.1) has a family of reversible measures ρp,α
indexed by p ∈ (0, 1) [15, Theorem 5.2] where ρp,α is the law of the Pascal point process or
negative binomial process (see, e.g., [39, Section 2.7], [23] and [15, Section 5.2]). We recall the
definition here. For a ∈ R and n ∈ N, the rising factorial (also known as Pochhammer symbol) is

(a)0 = 1, (a)n = a(a+ 1) · · · (a+ n− 1).

Definition 2.1. Let p ∈ (0, 1) and α be a finite measure on E. ρp,α is the uniquely defined
probability measure on N<∞ such that:

� For all B ∈ E , and n ∈ N0

ρp,α({η : η(B) = n}) = (1− p)α(B) p
n

n!
(α(B))n. (2.3)

� For all n ≥ 2 and all disjoint B1, . . . , Bn ∈ E , the variables η 7→ η(Bi), i = 1, . . . , n, are
independent.

We work in the Hilbert space H = L2(N<∞,N<∞, ρp,α) of complex-valued square-integrable
functions. The scalar product is

⟨f, g⟩ =
∫
fg dρp,α.

2.3 Representation of the su(1, 1) current algebra

Let D ⊂ H be the set of bounded measurable functions F for which there exists a cutoff mF ∈ N
such that F is supported in {η : η(E) ≤ mF }. We define operators k±(φ), k0(φ) : D → D indexed
by bounded measurable functions φ : E → C as follows:

k+(φ)F (η) =
1
√
p

∫
φ(x)F (η − δx)η(dx),

k−(φ)F (η) =
√
p

∫
φ(x)F (η + δx)

(
α+ η)

(
dx),

k0(φ)F (η) = F (η)

(∫
φdη +

1

2

∫
φdα

)
.
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for η ∈ N<∞. The raising operator k+(φ) and the lowering operator k−(φ) map functions
supported in {η : η(E) = n} to functions supported in {η : η(E) = n+1} and {η : η(E) = n−1}
respectively. The indicator 1{0} that there is no particle at all (vacuum) is annihilated by all
lowering operators: k−(φ)1{0} = 0.

Our operators are a representation of the su(1, 1) current algebra, i.e., they represent the
matrix-valued maps x 7→ φ(x)k+, x 7→ φ(x)k−, x 7→ θ(x)k0 with

k+ =

(
0 i
0 0

)
, k− =

(
0 0
i 0

)
, k0 =

(
1/2 0
0 −1/2

)
,

see [16, Section 2.2]. The following commutation relations can be checked by an explicit com-
putation:[

k−(φ), k+(θ)
]
= 2k0(φθ),

[
k0(θ), k+(φ)

]
= k+(φθ), [k0(θ), k−(φ)] = −k−(φθ),

where [T, S] := TS − ST . Indeed, it can be readily verified that

k−(φ)k+(θ)F (η) =

∫∫
φ(y)θ(x)F (η − δx + δy)η(dx)(α+ η)(dy)

+ F (η)

∫
φ(y)θ(y)(α+ η)(dy),

k+(θ)k−(φ)F (η) =

∫∫
φ(y)θ(x)F (η − δx + δy)η(dx)(α+ η)(dy)

+ F (η)

∫
φ(x)θ(x)η(dy).

Subtracting these equations yields the commutation relation[
k−(φ), k+(θ)

]
F (η) = F (η)

∫
φ(x)θ(x)(α+ 2η)(dx) = 2k0(φθ)F (η).

The other relations follow similarly.
The factor

√
p included in the definitions of k±(φ) is irrelevant for the commutation relations

but it matters for the adjointness relation ⟨f, k+(φ)g⟩ = ⟨k−(φ)f, g⟩ proven in Lemma 3.2.
We leave a thorough analysis of the current algebra generated by the operators k±(φ), k0(φ) to

another article [16] and focus on the operators associated with the constant function φ = 1, equal
to 1 on all of E. In Lemma 4.2 below, we check that for every ξ ∈ C, the operator 1

i

(
ξk+(1)−

ξk−(1)) with domain D is closable with self-adjoint closure A. The operator exp(ξk+(1) −
ξk−(1)) is, by definition, the unitary exp(iA). For θ ∈ R, the unitary exp

(
2iθk0(1)

)
is defined

as a multiplication operator, it multiplies a function f(η) with exp(iθ(α(E) + 2η(E))). In this
way we obtain a family of unitary operators

U(ξ, θ) = exp
(
ξk+(1)− ξk−(1)

)
exp
(
2iθk0(1)

)
, ξ ∈ C, θ ∈ R. (2.4)

For the definition of the unitary (2.4), it is essential that α has finite total mass and that each
configuration η has finitely many particles.

2.4 Symmetries of consistent particle processes

Let (Pt)t≥0 be the semigroup of a Markov process with state space N<∞. For a measurable
f : N<∞ → R+, let Af : N<∞ → R+ be the function given by

Af(η) =
∫
f(η − δx)η(dx).
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Definition 2.2. The semigroup (Pt)t≥0 is consistent if PtAf = APtf for all measurable
f : N<∞ → R+ and all t ≥ 0.

Notice that, up to questions of domains, A =
√
p k+(1). In Proposition 4.1 below, we show

that if a process is consistent then it is conservative, i.e., the total number of particles is constant
in time. In view of that, we could normalize A by the total mass η(E) (which is constant in
time) and read consistency as the property that the action of removing a particle uniformly at
random commutes with the dynamics [9, 15].

The following theorem generalizes item 1 (i) in Theorem 3.1 in Carinci et al. [7].

Theorem 2.3. Let (Pt)t≥0 be the semigroup of a Markov process with state space N<∞. Let
p ∈ (0, 1) and α be a finite measure on E. Assume that the process is consistent, and admits the
Pascal law ρp,α as a reversible measure. Then Pt commutes with all unitaries U(ξ, θ) from (2.4):

PtU(ξ, θ)f(η) = U(ξ, θ)Ptf(η)

for all t ≥ 0, f ∈ L2(N<∞,N<∞, ρp,α) and ρp,α-almost all η ∈ N<∞.

The generalized symmetric inclusion process is a consistent Markov process and admits the
Pascal law ρp,α as a reversible measure (as proved in [15, Theorem 5.2.]) and, thus, Theorem 2.3
applies.

2.5 Intertwining with Meixner polynomials

Let Pn be the L2-closure of the space of polynomials of degree at most n in the counting
variables η(B). Thus Pn is the closed linear hull of monomials η 7→ η(B1)

n1 · · · η(Bℓ)
nℓ with

n1 + · · · + nℓ ≤ n and B1, . . . , Bℓ ∈ E . For fn : E
n → C a bounded measurable function, let

In(fn) ∈ L2(N<∞,N<∞, ρp,α) be given by

In(fn) := f − orthogonal projection of f onto Pn−1,

where f(η) :=
∫
fndη

⊗n. The orthogonalized version of

η(B1)
n1 · · · η(Bℓ)

nℓ

with disjoint B1, . . . , Bℓ and n1 + · · ·+ nℓ = n, is a product of univariate Meixner polynomials
with leading coefficient 1:

In
(
1
⊗n1
B1

⊗ · · · ⊗ 1
⊗nℓ
Bℓ

)
(η) =

ℓ∏
i=1

Mni(η(Bi);α(Bi), p)

for ρp,α-almost all η. See, e.g., Lytvynov [30, Lemma 3.1] or [15, Proposition 5.3]. The definition
of univariate Meixner polynomials is recalled in Appendix A. The letter In reflects an analogy
with Poisson–Charlier polynomials and multiple stochastic integrals with respect to compensated
Poisson random measures [27, Section 12].

Our second main theorem generalizes item 1 (ii) in Theorem 3.1 in Carinci et al. [7]. For
f : N<∞ → C we define a sequence of functions (fn)n∈N by

fn(x1, . . . , xn) = f(δx1 + · · ·+ δxn

)
.

Each function fn is symmetric, i.e., its value stays the same when the variables are permuted.
The inverse of the hyperbolic tangent is denoted artanh.
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Theorem 2.4. Let ξ = artanh
√
p and U = exp

(
ξk+(1)− ξk−(1)

)
. Then for all n ∈ N and all

bounded measurable f : N<∞ → C supported in {η : η(E) = n}, we have

Uf = (1− p)α(E)/2 1

n!
(1− p)nIn(fn).

Furthermore, U1{0} = (1− p)α(E)/2
1.

Combining Theorems 2.3 and 2.4, we obtain a new proof of an intertwining relation proven
by other means in [15, Theorems 3.15 and 5.2]. Let

(
p
(n)
t

)
t≥0

be a semigroup on symmetric
bounded and measurable functions from En to C that satisfies

(Ptf)(δx1 + · · ·+ δxn) =
(
p
(n)
t fn

)
(x1, . . . , xn).

for all measurable bounded f : N<∞ → C and x1, . . . , xn ∈ E.

Corollary 2.5. Under the assumptions of Theorem 2.3: For all t ≥ 0, all n ∈ N, and every
bounded measurable fn : E

n → C,

PtIn(fn) = In
(
p
(n)
t fn

)
.

Proof. Apply Theorem 2.3 to U(ξ, θ) for ξ = artanh
√
p and θ = 0, combine with Theorem 2.4,

and observe that n-dependent constants may be dropped because the process is conservative
(see Proposition 4.1 below). ■

Furthermore, we note that, in addition to unitary intertwinings, relation [15, equation (3.6)]
in terms of the K-transform can also be derived using algebraic techniques: The K-transform
can be expressed with the operator k+(1). More precisely, it is equal to exp

(√
pk+(1)

)
f(η).

This relation serves as the continuum counterpart to [9, Lemma 4.2].

2.6 Algebraic expression for the generator

On the lattice the generator (2.2) of the symmetric inclusion process can be expressed directly
in terms of raising and lowering operators associated with lattice sites [19]: Suppose that αy = α
does not depend on y. Let ex ∈ NE

0 be the vector given by ex(y) = δx,y. Set

k+x f(n) =
1
√
p
nxf(n− ex), k−x f(n) =

√
p (α+ nx)f(n+ ex),

k0xf(n) =
(α
2
+ nx

)
f(n).

(
Our operators k#(φ) correspond to k#(φ) =

∑
x φ(x)k

#
x for # = +, 0 and k−(φ) =

∑
x φ(x)k

−
x .
)

Then

L =
∑

x,y∈E
x ̸=y

c(x, y)

(
k+x k

−
y + k−x k

+
y − 2k0xk

0
y +

α2

2
I

)

=
∑

x,y∈E
c(x, y)

(
k+x k

−
y + k−x k

+
y − 2k0xk

0
y +

(
α2

2
− α1{x=y}

)
I

)
, (2.5)

where I is the identity operator. The rewrite is a key ingredient to the algebraic approach for
duality: Dual processes such as the Brownian energy process have the same algebraic expression
but for a different representation of the su(1, 1) algebra [19, Section 6.2].
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In the continuum, equation (2.5) is problematic as we cannot define operators k#x –in the

lingo of quantum field theory, x 7→ k#x only make sense as operator-valued distributions [43,
Section 3.7]. However, using the operators k#(φ) introduced above, equation (2.5) generalizes
nicely, when c(x, y) is of product form c(x, y) = 2φ(x)φ(y). In that case

L = k+(φ)k−(φ) + k−(φ)k+(φ)− 2k0(φ)2 +

(
1

2

(∫
φdα

)2

−
∫
φ2 dα

)
I. (2.6)

This expression makes perfect sense in the continuum setup as well. Moreover, it can readily be
checked that (2.6) holds if L is the formal generator (2.1) of the generalized symmetric inclusion
process as well. A similar rewrite is possible if c(x, y) is a linear combination of symmetrized
products φ1(x)φ2(y)+φ2(x)φ1(y). More generally, say on E = Rd with homogeneous measures
α(dx) = αdx, one may hope to give meaning to expressions like

L =

∫
c(x, y)

(
k+x k

−
y + k+y k

−
x − 2k0xk

0
y +

α2

2

)
dxdy − α

∫
c(x, x) dx

by first defining it as (2.6) and its siblings when c(x, y) is of product form or a linear combina-
tion of symmetrized products, and second by approximating sufficiently nice functions c(x, y)
by linear combinations of symmetrized products. We leave as an open problem to carry out
this program, to clarify its usefulness for Markov processes, and to figure out its relation to
Hamilton operators

∫
µ(k)a(k)†a(k)dk in quantum field theory and quantum many-body theory

(see, e.g., the non-numbered proposition preceding Theorem X.45 in Reed and Simon [37] or
Talagrand [43, Section 3.7]).

3 Papangelou kernel for the Pascal point process

If X is a negative binomial variable with parameters p ∈ (0, 1) and a > 0, then

(n+ 1)P(X = n+ 1) = (1− p)a
(a)n+1

n!
pn+1 = p(a+ n)P(X = n),

for all n ∈ N0, accordingly

E[Xf(X)] = E[p(a+X)f(X + 1)]

for all f : N0 → R+. The following proposition gives the analogous property for Pascal point
processes. For future reference we state and prove the proposition for σ-finite measures α,
allowing for configurations with infinitely many particles. Thus, let N be the space of s-finite
counting measures on E. As E is a Borel space, N consists of the measures η on E that are
finite or countable sums of Dirac measures. The space N is equipped with the σ-algebra N
generated by the counting variables B 7→ η(B), B ∈ E .

A Pascal point process with parameters p and α is a random variable η : (Ω,F ,P) → (N,N )
that satisfies the properties listed in the definition of ρp,α: Counting variables for disjoint re-
gions Bi are independent, and each counting variable η(B) has a negative binomial distribution
with parameters p and α(B). For sets with infinite mass α(B) = ∞, the counting variable η(B)
is almost surely infinite. Pascal point processes have Laplace functional

E
[
e−

∫
fdη
]
= exp

(
−
∫

log

(
1− p e−f(x)

1− p

)
α(dx)

)
= exp

(
−

∞∑
j=1

∫ (
1− e−jf(x)

)pj
j
α(dx)

)

for measurable f : E → R+.
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Proposition 3.1. Fix p ∈ (0, 1) and a σ-finite measure α on E. Let η be a Pascal point process
with parameters p and α. Then

E
[∫

F (x, η)η(dx)

]
= E

[∫
F (x, η + δx)p(α+ η)(dx)

]
for all measurable F : E ×N → R+.

The proposition says that the kernel E × N → R+, (x,B) 7→ κ(x,B) = p(α(B) + η(B))
is a Papangelou kernel for the Pascal point process. For a general discussion on Papangelou
kernels, we refer to [31] or [35, Section 1.2.2].

Proof. Pascal point processes are compound Poisson; we deduce the proposition from the
Mecke formula for Poisson point processes. Let Π =

∑
i δ(Xi,Ni) be a Poisson point process

on E × N0 with intensity measure β = α ⊗
(∑∞

n=1
pn

n δn
)
. Then ξ =

∑
iNiδXi is a Pascal

point process with law ρp,α. The Mecke equation for Π [27, Theorem 4.1] and measurable
G : (E × N0)×N(E × N0) → R+ gives

E
[∑

i

G((Xi, Ni),Π)

]
=

∞∑
n=1

pn

n

∫
E
[
G
(
(x, n), δ(x,n) +Π

)]
α(dx).

Let φ : E × N(E) → R+ be a measurable function. We apply the Mecke equation for Π to
G
(
(x, n),

∑
i δ(xi,ni)

)
:= nφ

(
x,
∑

i niδxi

)
and get

E
[∑

i

Niφ(Xi, ξ)

]
=

∞∑
n=1

pn
∫

E[φ(x, ξ + nδx)]α(dx). (3.1)

Using (3.1) for φ(x, µ) = F (x, µ+ δx), we obtain

pE
[∑

i

NiF
(
Xi, ξ + δXi

)]
= p

∞∑
n=1

pn
∫

E[F (x, ξ + (n+ 1)δx)]α(dx)

=

∞∑
n=2

pn
∫

E[F (x, ξ + nδx)]α(dx). (3.2)

We apply (3.1) to φ(x, µ) = F (x, µ) and eliminate the sum over n ≥ 2 using (3.2). This gives

E
[∑

i

Niφ(Xi, ξ)

]
= p

∫
E[F (x, ξ + δx)]α(dx) + pE

[∑
i

NiF
(
Xi, ξ + δXi

)]
.

Equivalently,

E
[∫

F (x, ξ)ξ(dx)

]
= pE

[∫
F (x, ξ + δx)(α+ ξ)(dx)

]
and the proof is complete as ξ and η are equal in distribution. ■

Turning back to the law ρp,α on N<∞ for finite measures α, we obtain∫ (∫
F (x, η)η(dx)

)
ρp,α(dx) =

∫ (∫
F (x, η + δx)p(α+ η)(dx)

)
ρp,α(dx) (3.3)

for all measurable F : E×N<∞ → R+, hence also all bounded measurable functions F (here we
use that the expected total number of particles is finite when α has finite total mass).
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Lemma 3.2. For all bounded measurable φ : E → C and all f, g ∈ D,〈
f, k+(φ)g

〉
= ⟨k−(φ)f, g⟩.

Proof. Let us denote integration with respect to ρp,α as E[f(η)] =
∫
fdρp,α. We apply equa-

tion (3.3) to F (x, η) = φ(x)f(η)g(η − δx) and obtain

〈
f, k+(φ)g

〉
=

1
√
p
E
[∫

φ(x)f(η)g(η − δx)η(dx)

]
=

√
pE
[∫

φ(x)f(η + δx)g(η)(α+ η)(dx)

]
= ⟨k−(φ)f, g⟩. ■

4 Symmetries. Proof of Theorem 2.3

Before we turn to the proof of Theorem 2.3, we shows that consistency implies conservativity,
which is of interest in its own.

Proposition 4.1. Every consistent Markov semigroup is conservative.

Proof. Let (Pt)t≥0 be Markov semigroup on (N<∞,N<∞) that is consistent, i.e., PtAf = APtf
for all t ≥ 0 and all measurable f : N<∞ → R+. Then, for all k ∈ N,

PtAk
1 = AkPt1 = Ak

1. (4.1)

A straightforward computation shows that Ak
1 is a descending factorial power of the total

number of particles,(
Ak

1
)
(η) = η(E)(η(E)− 1) · · · (η(E)− k + 1), (4.2)

for all η ∈ N<∞. Let (ηt)t≥0 be a Markov process with semigroup (Pt)t≥0 and deterministic
initial condition η0 = µ ∈ N<∞, defined on some probability space

(
Ω,F ,Pµ

)
. Equations (4.1)

and (4.2) show that under Pµ, at all times t ≥ 0, the total number of particles ηt(E) has
the same factorial moments as η0(E). The factorial moments of η0(E) = µ(E) (hence ηt(E))
vanish for k ≥ µ(E) + 1, therefore the moment problem is uniquely solvable and we conclude
ηt(E) = η0(E) = µ(E), Pµ-almost surely, and the process is conservative. ■

Remember that the set D ⊂ H consists of the bounded measurable functions f supported in
{η : η(E) ≤ nf} for some nf <∞.

Lemma 4.2. For every ξ ∈ C, the operator 1
i

(
ξk+(1)− ξk−(1)

)
with domain D is closable and

its closure is self-adjoint.

Put differently, the operator is essentially self-adjoint on D and the latter is a core for the
self-adjoint closure [36, Section VIII.2].

Proof. The operator A = 1
i

(
ξk+(1) − ξk−(1)

)
is similar to the Segal field operators for free

quantum fields, we adapt the proof of essential self-adjointness for the latter from Reed and
Simon [37, Theorem X.41 (a)]. The domain D is dense in H and satisfies ⟨f,Ag⟩ = ⟨Af, g⟩ for
all f, g ∈ D by Lemma 3.2. Thus, A with domain D(A) = D is symmetric. Symmetric operators
are always closable. To show that the closure is self-adjoint, we check that every vector f ∈ D
is analytic for A and conclude with Nelson’s analytic vector theorem [37, Theorem X.39]. As
a reminder, Nelson’s analytic vector theorem states that a symmetric operator on a Hilbert
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space whose domain contains a total set of analytic vectors is essential self-adjoint. A vector f
is analytic for A if there exists ε > 0 such that

∑∞
n=0 n!

−1εn∥Anφ∥ < ∞. Let f ∈ D and
m = mf ∈ N be such that |f(η)| ≤ ∥f∥∞1{η(E)≤mf} on N<∞. Then∣∣k+(1)f(η)∣∣ ≤ 1

√
p
∥f∥∞(mf + 1)1{η(E)≤mf+1},

|k−(1)f(η)| ≤ √
p ∥f∥∞

(
α(E) +mf − 1

)
1{η(E)≤mf−1}

for all η ∈ N<∞. Set β := α(E), we obtain a common upper bound to k±(1)f :∣∣k±(1)f(η)∣∣ ≤ 1
√
p
∥f∥∞(β +mf + 1)1{η(E)≤mf+1}.

We expand the power
(
k+(1) − k−(1)

)n
f and bound each term in the expansion by repeated

use of the previous inequality. This gives∣∣(k+(1)− k−(1)
)n
f(η)

∣∣ ≤ (2∥f∥∞√
p

)n

(β +mf + 1)n1{η(E)≤mf+n}.

The indicator on the right has norm ≤ 1. Set s = 2|ξ| ∥f∥∞/
√
p, we obtain

∞∑
n=0

εn

n!

∥∥(ξk+(1)− ξk−(1)
)n
f
∥∥ ≤

∞∑
n=0

(sε)n

n!

(
β +mf + 1)n,

which is finite for ε < 1/s. Thus, every vector f ∈ D is analytic and A is essentially self-adjoint
on D. ■

Proof of Theorem 2.3. Let t ≥ 0. As ρp,α is reversible, Pt is a well-defined, self-adjoint and
bounded operator on L2(N<∞,N<∞, ρp,α). The operator exp

(
2iθk0(1)

)
acts as multiplication

with exp(iθ(α(E)+ 2η(E))), it commutes with Pt because (Pt)t≥0 preserves the total number of
particles (see Proposition 4.1 below).

For exp
(
ξk+(1) − ξk−(1)

)
, the short informal reasoning is simple: Pt is self-adjoint and

commutes with k+(1), therefore it also commutes with the adjoint k−(1) and also with the
difference ξk+(1)− ξk−(1) and the exponential exp

(
ξk+(1)− ξk−(1)

)
. The precise reasoning is

slightly longer because the operators are unbounded and we have to consider domains carefully.
Let f , g be non-negative functions in D. Arguing as in the proof of Lemma 3.2, we obtain
⟨k−(1)f, Ptg⟩ = ⟨f,APtg⟩. Therefore,

⟨k−(1)f, Ptg⟩ = ⟨f,APtg⟩ = ⟨f, PtAg⟩ =
〈
Ptf, k

+(1)g
〉

for all non-negative f, g ∈ D. Taking complex conjugates and switching f and g, we get〈
k+(1)f, Ptg

〉
= ⟨Ptf, k

−(1)g⟩ and then, by linear combination,〈
1

i

(
ξk+(1)− ξk−(1)

)
f, Ptg

〉
=

〈
Ptf,

1

i

(
ξk+(1)− ξk−(1)

)
g

〉
for all f, g ∈ D. By Lemma 4.2, the operator −i

(
ξk+(1) − ξk−(1)

)
with domain D is closable

and its closure A is self-adjoint. Taking limits in the above equation, we obtain

⟨Af, Ptg⟩ = ⟨Ptf,Ag⟩

for all f , g in the domain of A. In particular, for fixed g in the domain of A, and all f ∈ D(A),
we have ⟨Af, Ptg⟩ = ⟨f, PtAg⟩, hence Ptg is in the domain of A∗ and A∗Ptg = PtAg.

As A is self-adjoint, we conclude that Pt leaves the domain of A invariant and PtA = APt on
the domain of A. It follows that Pt commutes with all spectral projections of A [38, Proposi-
tion 5.26] and then, by spectral calculus, Pt exp(iA) = exp(iA)Pt. ■
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5 Unitary operator vs. Meixner polynomials.
Proof of Theorem 2.4

Here we prove Theorem 2.4. Our proof is similar in spirit to the proof with generating functions
from Carinci et al. [7], see in particular Proposition 5.4 below. In addition, we point out
a connection with the representation of the group SU(1, 1) with the Möbius transform exploited
by Bargmann [4, Section 9].

For measurable z : E → C with sup |z| < 1, we define the exponential state

Ez(0) = 1, Ez
(
δx1 + · · ·+ δxn

)
=

1
√
pn
z(x1) · · · z(xn).

The exponential state owes its name to the relation Ez = exp
(
k+(z)

)
1{0}, compare Meyer

[32, Section IV.1]. The state has norm

∥Ez∥2 = (1− p)α(E) exp

(
−
∫

log
(
1− |z|2

)
dα

)
,

following analogous arguments as in [15, equation (5.7)]. For ξ ∈ C, consider the matrix

A(ξ) = exp

((
0 iξ

−iξ 0

))
=

 cosh |ξ| i
ξ

|ξ|
sinh |ξ|

−i
ξ

|ξ|
sinh |ξ| cosh |ξ|

 .

The matrix is in SU(1, 1), the group of 2× 2 matrices of the form

A =

(
a b

b a

)
with a, b ∈ C and |a|2 − |b|2 = 1. It is known that SU(1, 1) acts on the open complex unit disk
{z : |z| < 1} by the Möbius transform

ϕA(z) =
az + b

bz + a
.

For a function z from E to the open unit disk, we define a new function zξ by

zξ(x) =
1

i
ϕA(ξ)

(
iz(x)

)
=

z(x) + ξ
|ξ| tanh |ξ|

1 + z(x) ξ
|ξ| tanh |ξ|

and a scalar C(ξ) ∈ C by

C(ξ) = exp

(
−
∫

log

(
cosh |ξ|+ z(y)

ξ

ξ
sinh |ξ|

)
α(dy)

)
.

The logarithm is the principal branch of the complex logarithm on C \ (−∞, 0], i.e., log z =
log |z| + iθ with θ ∈ (−π, π) an argument of z. More concretely, in view of |z(y)| < 1 and
tanh |ξ| < 1,

log

(
cosh |ξ|+ z(y)

ξ

ξ
sinh |ξ|

)
= log(cosh |ξ|) + log

(
1 + z(y)

ξ

ξ
tanh |ξ|

)
with log(1 + u) =

∑∞
n=1(−1)n−1un/n.

The scalar C(ξ) is similar to multipliers introduced by Bargmann when he constructed group
actions SU(1, 1) on spaces of functions from the complex unit disk to C [4, Section 9].
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Proposition 5.1. Let ξ ∈ C and z : E → C be measurable with sup |z| < 1. Then

exp
(
ξk+(1)− ξk−(1)

)
Ez = C(ξ)Ezξ .

Proof. To lighten notation we write down the proof for real-valued ξ only, the general case is
similar. Thus let ξ = t ∈ R. Set ft := C(t)Ezt . We show that (i) t 7→ ft is norm differentiable,
(ii) ft is in the domain of the closure A of 1

i

(
k+(1) − k−(1)

)
, and (iii) ∂tft = iAft. The key

equations are (5.1), (5.3), (5.4), and (5.5). Items (i)–(iii) imply ft = exp(itA)f0 for all t ∈ R.
The proposition follows upon specializing to t = ξ.

(i) The map t 7→ zt is differentiable,

∂tzt(x) =

(
1− z0(x)

2
)(
1− tanh(t)2

)
(1 + z0(x) tanh t)2

= 1− zt(x)
2

pointwise for all x and actually in supremum norm

lim
h→0

∥∥∥∥1h(zt+h − zt)− (1− zt)
2

∥∥∥∥
∞

= 0.

The multiplier C(t) is differentiable with derivative

C ′(t) = −C(t) d
dt

∫
(log(cosh t) + log(1 + z0(y) tanh t))α(dy)

= −C(t)
∫
zt(y)α(dy). (5.1)

To prove that the map t 7→ Ezt is differentiable, we express Ezt+h
− Ezt with t, h ∈ R in terms

of vt,h := zt+h − zt. For the empty configuration η = 0, we note that both Ezt+h
(0) and Ezt(0)

are equal to 1 hence the difference vanishes. For single-particle configurations η = δx1 , we have
Ezt+h

(δx1)− Ezt(δx1) = vt,h(x1). For n ≥ 2, we have(
Ezt+h

− Ezt
)
(δx1 + · · ·+ δxn)

=
1

√
pn

(
n∏

i=1

(
zt(xi) + vt,h(xi)

)
−

n∏
i=1

zt(xi)

)

=
1

√
pn

n∑
i=1

vt,h(xi)
∏
j ̸=i

zt(xj) +
1

√
pn

∑
I⊂[n]:
|I|≥2

∏
i∈I

vt,h(xi)
∏
j /∈I

zt(xj). (5.2)

We define a function Qt,h : N<∞ → C as follows: If η(E) ≤ 1, then Qt,h(η) := 0; if η(E) ≥ 2,
write η = δx1 + · · ·+ δxn with n ≥ 2 and x1, . . . , xn ∈ E and set

Qt,h(δx1 + · · ·+ δxn) :=
1

√
pn

∑
I⊂[n]:
|I|≥2

∏
i∈I

vt,h(xi)
∏
j /∈I

zt(xj)

(this is precisely the second term in (5.2)). Let us check that ∥Qt,h∥ = O
(
h2
)
as h → 0. At

fixed number of particles n ≥ 2, Qt,h is bounded by

sup
η : η(E)=n

|Qt,h(η)| ≤
1

√
pn

(
n

2

)
∥vt,h∥2∞∥zt∥n−2.

Therefore, the L2-norm satisfies

∥Qt,h∥2 ≤
∑
n≥2

ρp,α(η(E) = n) sup
η : η(E)=n

|Qt,h(η)|2 ≤ κ∥vt,h∥4∞
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with

κ = (1− p)α(E)
∑
n≥2

(α(E))n
n!

n4∥zt∥2n−4
∞ .

For proving κ < ∞ it is enough to show that ∥zt∥∞ < 1. By definition of zt, the set
{zt(x) : x ∈ E} is contained in the image of the disk D0 := {ζ ∈ C : |ζ| ≤ ∥z0∥∞} under the
Möbius transform ζ 7→ (ζ + tanh t)/(1 + ζ tanh t). It is known that the Möbius transform maps
the open unit disk to itself, and it maps compact sets to compact sets because it is continu-
ous. Furthermore, D0 is compact and contained in the open unit disk (because ∥z0∥∞ < 1).
Therefore, the Möbius transform maps D0 to a compact subset Kt of the open unit disk. In
particular, Kt stays away from the boundary of the unit disk and we deduce ∥zt∥∞ < 1, and
then κ <∞.

The differentiability of t 7→ zt in supremum norm yields ∥vt,h∥∞ = ∥zt+h − zt∥∞ = O
(
h2
)
.

Altogether ∥Qt,h∥ ≤
√
κ∥vt,h∥2∞ = O

(
h2
)
.

A similar bound based on vt,h = h(1− zt)
2 +O

(
h2
)
shows that the linear (in vt,h) term is

h
1

√
pn

n∑
i=1

(1− zt(xi))
2
∏
j ̸=i

zt(xj) +O
(
h2
)
.

It follows that t 7→ Ezt is norm-differentiable with derivative

∂tEzt(δx1 + · · ·+ δxn) =
1
√
p

n∑
i=1

(
1− zt(xi)

2
)∏
j ̸=i

zt(xj)√
p

(5.3)

for n ≥ 1 and ∂tEzt(0) = 1. The map t 7→ ft is norm-differentiable with derivative

∂tft = C ′(t)Ezt + C(t)∂tEzt . (5.4)

(ii) We show that every exponential vector Ez, ∥z∥∞ < 1, is in the domain of the closure of
k+(1)− k−(1). Set ψ0 = 1{0} and

ψn(δx1 + · · ·+ δxm) = δn,m

m∏
i=1

z(xi)/
√
p

so that Ez =
∑∞

n=0 ψn. Every ψn is in D. Furthermore,

k+(1)ψn(δx1 + · · ·+ δxm) = δm,n+1
1
√
p

m∑
i=1

∏
j ̸=i

z(xj)√
p
,

∞∑
n=0

∥∥k+(1)ψn

∥∥2 ≤ E
[
1{η(E)≥1}p

−η(E)η(E)2∥z∥2(η(E)−1)
∞

]
<∞.

It follows that k+(1)
∑N

n=0 ψn converges in norm. Turning to k−(1), we note

k−(1)ψn(δx1 + · · ·+ δxm) = δm,n−1

(∫
zdα+

m∑
i=1

z(xi)

) m∏
j=1

z(xi)√
p

= δm,n−1

(∫
zdα

) m∏
j=1

z(xj)√
p

+ δm,n−1
1
√
p

m∑
i=1

z(xi)
2
∏
j ̸=i

z(xj)√
p
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and
∑∞

n=1 ∥k−(1)ψn∥2 <∞ as well. Therefore, the partial sums SN =
∑N

n=0 ψn are in D, they
converge in norm to Ez, and

(
k+(1)− k−(1)

)
SN converges in norm to

∑
n

(
k+(1)− k−(1)

)
ψn.

It follows that Ez is in the domain of the closure of
(
k+(1)− k−(1)

)
and(

k+(1)− k−(1)
)clEz(δx1 + · · ·+ δxn)

= −
(∫

zdα

)
Ez(δx1 + · · ·+ δxn) +

1
√
p

n∑
i=1

(
1− z(xi)

2
)∏
j ̸=i

z(xj)√
p
. (5.5)

The function ft = C(t)Ezt is in the domain of the closure too.

(iii) Comparing the previous equation with (5.4), (5.3), and (5.1), we get ∂tft =
(
k+(1) −

k−(1)
)cl
ft = iAft. The proof is complete. ■

Remark 5.2. The proof can be concluded using an explicit formula given in [30, Proposition 3.1]
for generating functionals Gφ : N<∞ → C defined by

Gφ(η) = 1 +

∞∑
n=1

1

n!
(1− p)nIn(φ

⊗n)(η)

for measurable φ : E → C with sup |φ| < 1:

Gφ(η) = exp

(
−
∫

log(1 + pφ)dα+

∫
log

(
1 + φ

1 + pφ

)
dη

)
.

Applying Proposition 5.1 to exponential vectors Eφ√p with φ an arbitrary bounded measurable

function, we find that (1 − p)−α(E)/2 exp
(
ξk+(1) − ξk−(1)

)
maps the function f : N<∞ → C

given by

f(0) = 1, f(δx1 + · · ·+ δxn) =
n∏

i=1

φ(xi)

to Gφ, from which we deduce that Theorem 2.4 holds true when fn = φ⊗n, much in the same
way we prove Proposition 5.4 below. The general statement follows with polarization formulas
and (multi)linearity, and density arguments–notice that (f1, . . . , fn) 7→ In(f1 ⊗s · · · ⊗s fn) is
a symmetric multilinear mapping and as such, uniquely determined by its value for f1 = · · · = fn.

For convenience of the reader, we provide a self-contained proof that does not require adaption
of previously proven statements to our setup (such as [30, Proposition 3.1] which uses the
machinery of Jacobi fields and distribution theory).

We start by applying Proposition 5.1 to exponential vectors associated with indicators.

Corollary 5.3. Let ξ > 0 with tanh ξ =
√
p. Then, for every B ∈ E and s ∈ (−1, 1), the unitary

U = exp
(
ξk+(1)− ξk−(1)

)
maps the function fs : N<∞ → R given by

fs(0) = 1, fs(δx1 + · · ·+ δxn) = sn
n∏

i=1

1B(xi)

to

Ufs(η) = (1− p)α(E)/2(1 + ps)−α(B)

(
1 + s

1 + ps

)η(B)

.
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Proof. The function fs is the exponential state associated with z(x) = s
√
p1B(x). The trans-

formed z is

zξ(x) =
s
√
p1B(x) +

√
p

1 + sp1B(x)
=

√
p

1 + s1B(x)

1 + ps1B(x)

and the associated exponential state is

Ezξ(δx1 + · · ·+ δxn) =
n∏

i=1

(
1 + s1B(xi)

1 + ps1B(xi)

)n

or equivalently,

Ezξ(η) =
(

1 + s

1 + ps

)η(B)

.

The multiplier is

C(ξ) = (cosh ξ)−α(E) exp

(
−
∫

log(1 + s
√
p1B tanh ξ)dα

)
= (1− p)α(E)/2(1 + ps)−α(B).

In the last line we have used (cosh ξ)2 = 1/
(
1− (tanh ξ)2

)
. We apply Proposition 5.1 and obtain

the corollary. ■

We remind that the univariate monic Meixner polynomials are denoted by Mn(x;α, p), see
Appendix A below.

Proposition 5.4. Fix B ∈ E. The unitary U maps the functions f (n) : N<∞ → R, n ∈ N, given
by

f (n)(δx1 + · · ·+ δxm) =


m∏
i=1

1B(xi), m = n,

0, m ̸= n

to

Uf (n)(η) = (1− p)α(E)/2 × 1

n!
(1− p)nMn(η(B);α(B), p).

Proof. Let f (0) := 1{0}. For s ∈ (−1, 1), with the notation of Corollary 5.3,

fs =

∞∑
n=0

snf (n).

The series converges in norm as the f (n)’s are orthogonal and
∑∞

n=0 |s|2n
∥∥f (n)∥∥2 <∞. As U is

unitary, hence continuous, we may exchange summation and the application of U which gives

Ufs =

∞∑
n=0

snUf (n) (5.6)

and the series on the right converges in norm. On the other hand, in the expression for Ufs
from Corollary 5.3, we recognize the generating function of Meixner polynomials with leading
coefficient (1− p)n:

Ufs = (1− p)α(E)/2
∞∑
n=0

sn

n!
(1− p)nMn(η(B);α(B), p), (5.7)
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see equation (A.2). The right side is not only absolutely convergent, pointwise for each η ∈ N<∞,
but also absolutely convergent in the Hilbert space H. Indeed as η 7→ η(B), under ρp,α is
a negative binomial variable with parameters α(B) and p (see equation (2.3)), the orthogonality
relations for univariate Meixner polynomials recalled in Appendix A tell us that the summands
are orthogonal and

s2n

n!2
(1− p)2n

∫
|Mn(η(B);α(B), p)|2ρp,α(dη) =

1

n!
(α(B))n

(
ps2
)n
.

The sum over n ∈ N0 of the right side is
(
1− ps2

)α(B)
and in particular, finite. Therefore, the

series on the right side in (5.7) converges in norm.
Thus, we have two convergent series expansions for the analytic function s 7→ Ufs from

(−1, 1) to H. As the expansion coefficients are uniquely determined, the coefficients of sn in
equations (5.6) and (5.7) must be the same. The proposition follows. ■

The symmetric tensor product of f1, . . . , fn : E → C is the function from En to C given by

f1 ⊗s · · · ⊗s fn(x1, . . . , xn) =
1

n!

∑
σ∈Sn

fσ(1)(x1) · · · fσ(n)(xn).

Above, Sn denotes the set of permutations of the numbers {1, . . . , n}. Consider disjoint sets
B1, . . . , Bℓ, integers n1, . . . , nℓ ∈ N adding up to N, and fn = 1

⊗sn1
B1

⊗s · · · ⊗s 1
⊗snℓ
Bℓ

. The
associated function f is supported on configurations that have exactly ni particles in Bi, for
each i = 1, . . . , ℓ, and n particles in total. On the relevant configurations there is an additional
combinatorial contribution. One finds

f(η) =
n1! · · ·nℓ!

n!
1{η(E\

⋃ℓ
i=1 Bi)=0}

ℓ∏
i=1

1{η(Bi)=ni}. (5.8)

Set B0 := E \
(⋃ℓ

i=1Bi

)
, n0 = 0, and

fi(η) = 1{η(Bi)=ni}, i = 0, . . . , ℓ. (5.9)

The next lemma says that U maps the product of fi’s to products of Ufi’s.

Lemma 5.5. Let {B0, . . . , Bℓ} be a set partition of E, n0, n1, . . . , nℓ ∈ N0, and f0, . . . , fℓ as in
equation (5.9). Then

(U(f0 · · · fℓ))(η) =
ℓ∏

j=0

1

nj !
(1− p)nj+α(Bj)/2Mnj (η(Bj);α(Bj), p).

Proof. Let V (t) := exp
(
t
(
k+(1)− k−(1)

))
. Notice that

k+(1)− k−(1) =
ℓ∑

j=0

(
k+(1Bj )− k−(1Bj )

)
.

For j = 0, . . . , ℓ, let νj be the negative binomial law on N0 with parameters p and α(Bj). The
space d0 of sequences with at most finitely many non-zero entries is dense in ℓ2(N0, νj). Consider
the operators k±j : d0 → ℓ2(N0, νj) given by

k+j gj(n) =
1
√
p
ngj(n− 1), k−i gi(n) =

√
p
(
α(Bi) + n

)
gi(n+ 1).
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The operator 1
i

(
k+j −k−j

)
is closable with self-adjoint closure, let Uj(t) = exp

(
t
(
k+j −k−j

))
, t ∈ R

be the associated strongly continuous unitary group. For g0, . . . , gℓ ∈ d0 and t ∈ R, set

Gt(η) =
ℓ∏

j=0

(Uj(t)gj)(η(Bj)).

The map t 7→ Gt from R → H is norm-differentiable, Gt is in the domain of the closure L of
k+(1) − k−(1), and d

dtGt(η) = LGt. It follows that Gt = V (t)G0. We apply the statement to
gj(n) = 1{n=nj} and t = ξ and deduce

U(f0 · · · fℓ)(η) =
ℓ∏

j=0

(Uj(ξ)gj)(η(Bj)). (5.10)

Finally, we notice that each term on the right side is given by a univariate Meixner polynomial as

(Uj(ξ)gj)(m) =
1

nj !
(1− p)nj+α(Bj)/2Mnj (m;α(Bj), p). (5.11)

This follows from Proposition 5.4 applied to a set E′ that is a singleton {x0}, to B = {x0},
and the measure α′ that gives mass α(Bj) to x. Alternatively, one may deduce the univariate
equation (5.11) directly from Theorem 3.1 in Carinci et al. [7]. To conclude, we insert (5.11)
into (5.10) and obtain the lemma. ■

Proof of Theorem 2.4. Let B1, . . . , Bℓ ∈ E disjoint, n1, . . . , nℓ ∈ N with n1 + · · · + nℓ = n,
and f : N<∞ → C the function with f(δx1 + · · ·+ δxn) = 1

⊗sn1
B1

⊗s · · · ⊗s 1
⊗snℓ
Bℓ

(x1, . . . , xn). Set

B0 = E \
(⋃ℓ

j=1Bj

)
and n0 = 0. Equation (5.8) and Lemma 5.5 yield

Uf =
n1! · · ·nℓ!

n!
(1− p)α(B0)/2 ×

ℓ∏
j=1

1

nj !
(1− p)nj+α(Bj)/2Mnj (η(Bj);α(Bj), p)

= (1− p)α(E)/2 × 1

n!
(1− p)n

ℓ∏
j=1

Mnj (η(Bj);α(Bj), p)

= (1− p)α(E)/2 × 1

n!
(1− p)nIn(fn).

This proves the theorem for all functions f of the form (5.8) with disjoint B1, . . . , Bℓ. By
linearity, the statement extends to all indicators of sets of the form

{η : η(E) = n} ∩

(
ℓ⋂

j=1

{η : η(Bj) = nj}

)

with ℓ ∈ N, n1, . . . , nℓ ∈ N0, and B1, . . . , Bℓ ∈ E (not necessarily disjoint). These sets form
a generating π-system of the σ-algebra Nn on Nn = {η : η(E) = n} that is the trace of N<∞
on Nn.

We conclude with a monotone class argument. Let V be the set of bounded functions
f : N∞ → C supported in Nn for which Uf = n!−1(1 − p)n+α(E)/2In(fn). Clearly V is a vec-
tor space. We check that it is closed under monotone pointwise limits of uniformly bounded
sequences: Suppose f (1) ≤ f (2) ≤ . . . and f (m) → f with C = supn

∥∥f (m)
∥∥
∞ < ∞ and f (m) ∈ V

for all m. Then, on the one hand f (m) → f also in L2-norm and
∥∥Uf (m) −Uf

∥∥→ 0 because U
is unitary. On the other hand∥∥In(f (m) − f

)∥∥2 ≤ ∫ ∣∣∣∣∫ (f (m)(x)− f(x)
)
ηn(dx)

∣∣∣∣2ρp,α(dη)
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because orthogonal projections onto a subspace decrease the norm. The integrand f (m) − f in
the inner integral on the right side goes to zero pointwise on En and is bounded by 2C with∫
2Cdηn ≤ 2Cη(E)n <∞, therefore by dominated convergence it goes to zero. All moments of

the negative binomial variable η 7→ η(E) are finite, therefore dominated convergence applied to
the outer integral yields

∥∥In(f (m)
)
− In(f)

∥∥→ 0 as m→ ∞. Thus, we may pass to the limit on
both sides of the equality Uf (m) = n!−1(1− p)n+α(E)/2In

(
f
(m)
n

)
and we deduce f ∈ V.

We have shown that V is a vector space that contains all indicators of a π-system that gener-
ates the σ-algebra and that it is stable under pointwise limits of uniformly bounded sequences.
The functional monotone class theorem [5, Theorem 2.12.9] implies that it contains all bounded
measurable functions. ■

As an alternative route to obtain the above results, one could skip exponential states and
Propositions 5.1 and 5.4 and start directly with Lemma 5.5, deducing the crucial equation (5.11)
directly from [7, Theorem 3.1].

A Univariate Meixner polynomials

We recall a few facts about the Meixner polynomials from Koekoek, Lesky and Swarttouw
[22, Section 9]. The Meixner polynomials with parameters α > 0 and p ∈ (0, 1) are given by

Mn(x) =Mn(x;α; p) :=
∞∑
k=0

(−x)k(−n)k
(α)k

1

k!

(
1− 1

p

)k

, (A.1)

where (a)0 = 1 and (a)k = a(a+ 1) · · · (a+ k − 1). They satisfy the symmetry Mn(x) =Mx(n)
and the orthogonality relation

∞∑
x=0

Mn(x)Mm(x)(1− p)αwp,α(x) = δn,m
1

wp,α(n)
, wp,α(n) =

pn

n!
(α)n.

The generating function is

G(t, x) =
∞∑
n=0

(α)n
n!

tnMn(x) =

(
1− t

p

)x

(1− t)−α−x.

The Meixner polynomials from (A.1) do not have leading coefficient 1, instead they are related
to the monic Meixner polynomials Mn(x) = Mn(x;α, p) by

Mn(x;α, p) =
1

(α)n

(
1− 1

p

)n

Mn(x;α, p)

from which we get

∞∑
n=0

sn

n!
(1− p)nMn(x) = G(−ps, x) = (1 + s)x(1 + ps)−x−α. (A.2)

The formula enters the proof of Proposition 5.4.
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[20] Giardinà C., Redig F., Vafayi K., Correlation inequalities for interacting particle systems with duality,
J. Stat. Phys. 141 (2010), 242–263.

[21] Karlin S., McGregor J., On a genetics model of Moran, Proc. Cambridge Philos. Soc. 58 (1962), 299–311.

https://doi.org/10.3842/SIGMA.2009.056
https://arxiv.org/abs/0905.4491
https://doi.org/10.1007/s002200200647
https://doi.org/10.2977/prims/1195194390
https://doi.org/10.2307/1969129
https://doi.org/10.1007/978-3-540-34514-5
https://doi.org/10.1007/BF01297339
https://doi.org/10.3842/SIGMA.2019.053
https://arxiv.org/abs/1812.08553
https://doi.org/10.1016/j.spa.2014.10.009
https://arxiv.org/abs/1302.3206
https://doi.org/10.1214/21-ejp684
https://arxiv.org/abs/1907.10583
https://doi.org/10.1007/s10955-016-1473-4
https://arxiv.org/abs/1507.01478
https://doi.org/10.1007/s00440-015-0674-0
https://arxiv.org/abs/1407.3367
https://doi.org/10.1007/BFb0084190
https://doi.org/10.1016/S0924-8099(06)80048-X
https://doi.org/10.1090/ulect/020
https://doi.org/10.1090/ulect/020
https://doi.org/10.1214/24-ejp1124
https://arxiv.org/abs/2112.11885
https://arxiv.org/abs/2402.07493
https://doi.org/10.1214/21-aihp1163
https://arxiv.org/abs/2007.08272
https://doi.org/10.1007/978-981-15-0302-3_7
https://arxiv.org/abs/1701.09115
https://doi.org/10.1007/s10955-009-9716-2
https://arxiv.org/abs/0810.1202
https://doi.org/10.1007/s10955-010-0055-0
https://doi.org/10.1017/S0305004100036513


Intertwinings for Continuum Particle Systems: an Algebraic Approach 21

[22] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their q-analogues,
Springer Monogr. Math., Springer, Berlin, 2010.
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