Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 046, 21 pages      arXiv:2311.08763      https://doi.org/10.3842/SIGMA.2024.046

Intertwinings for Continuum Particle Systems: an Algebraic Approach

Simone Floreani a, Sabine Jansen b and Stefan Wagner b
a)  Institute for Applied Mathematics, University of Bonn, Bonn, Germany
b)  Mathematisches Institut, Ludwig-Maximilians-Universität, 80333 München, Germany
c)  Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany

Received November 16, 2023, in final form May 22, 2024; Published online June 05, 2024

Abstract
We develop the algebraic approach to duality, more precisely to intertwinings, within the context of particle systems in general spaces, focusing on the $\mathfrak{su}(1,1)$ current algebra. We introduce raising, lowering, and neutral operators indexed by test functions and we use them to construct unitary operators, which act as self-intertwiners for some Markov processes having the Pascal process's law as a reversible measure. We show that such unitaries relate to generalized Meixner polynomials. Our primary results are continuum counterparts of results in the discrete setting obtained by Carinci, Franceschini, Giardinà, Groenevelt, and Redig (2019).

Key words: algebraic approach to stochastic duality; intertwining; inclusion process; Lie algebra $\mathfrak{su}(1,1)$; orthogonal polynomials.

pdf (508 kb)   tex (33 kb)  

References

  1. Accardi L., Boukas A., Quantum probability, renormalization and infinite-dimensional $\ast$-Lie algebras, SIGMA 5 (2009), 056, 31 pages, arXiv:0905.4491.
  2. Accardi L., Franz U., Skeide M., Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras, Comm. Math. Phys. 228 (2002), 123-150.
  3. Araki H., Factorizable representation of current algebra. Non commutative extension of the Lévy-Kinchin formula and cohomology of a solvable group with values in a Hilbert space, Publ. Res. Inst. Math. Sci. 5 (1969), 361-422.
  4. Bargmann V., Irreducible unitary representations of the Lorentz group, Ann. of Math. 48 (1947), 568-640.
  5. Bogachev V.I., Measure theory. Vol. I, Springer, Berlin, 2007.
  6. Boukas A., An example of a quantum exponential process, Monatsh. Math. 112 (1991), 209-215.
  7. Carinci G., Franceschini C., Giardinà C., Groenevelt W., Redig F., Orthogonal dualities of Markov processes and unitary symmetries, SIGMA 15 (2019), 053, 27 pages, arXiv:1812.08553.
  8. Carinci G., Giardinà C., Giberti C., Redig F., Dualities in population genetics: a fresh look with new dualities, Stochastic Process. Appl. 125 (2015), 941-969, arXiv:1302.3206.
  9. Carinci G., Giardinà C., Redig F., Consistent particle systems and duality, Electron. J. Probab. 26 (2021), 125, 31 pages, arXiv:1907.10583.
  10. Carinci G., Giardinà C., Redig F., Sasamoto T., Asymmetric stochastic transport models with $\mathcal{U}_q(\mathfrak{su}(1,1))$ symmetry, J. Stat. Phys. 163 (2016), 239-279, arXiv:1507.01478.
  11. Carinci G., Giardinà C., Redig F., Sasamoto T., A generalized asymmetric exclusion process with $U_q(\mathfrak{sl}_2)$ stochastic duality, Probab. Theory Related Fields 166 (2016), 887-933, arXiv:1407.3367.
  12. Dawson D.A., Measure-valued Markov processes, in École d'Été de Probabilités de Saint-Flour XXI—1991, Lecture Notes in Math., Vol. 1541, Springer, Berlin, 1993, 1-260.
  13. Etheridge A., Evolution in fluctuating populations, in Mathematical Statistical Physics, Elsevier, Amsterdam, 2006, 489-545.
  14. Etheridge A.M., An introduction to superprocesses, Univ. Lecture Ser., Vol. 20, American Mathematical Society, Providence, RI, 2000.
  15. Floreani S., Jansen S., Redig F., Wagner S., Intertwining and duality for consistent Markov processes, Electron. J. Probab. 29 (2024), 1-34, arXiv:2112.11885.
  16. Floreani S., Jansen S., Wagner S., Representations of the $\mathfrak{su}(1,1)$ current algebra, arXiv:2402.07493.
  17. Floreani S., Redig F., Sau F., Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations, Ann. Inst. Henri Poincaré Probab. Stat. 58 (2022), 220-247, arXiv:2007.08272.
  18. Franceschini C., Giardinà C., Stochastic duality and orthogonal polynomials, in Sojourns in Probability Theory and Statistical Physics. III. Interacting Particle Systems and Random Walks, a Festschrift for Charles M. Newman, Springer Proc. Math. Stat., Vol. 300, Springer, Singapore, 2019, 187-214, arXiv:1701.09115.
  19. Giardinà C., Kurchan J., Redig F., Vafayi K., Duality and hidden symmetries in interacting particle systems, J. Stat. Phys. 135 (2009), 25-55, arXiv:0810.1202.
  20. Giardinà C., Redig F., Vafayi K., Correlation inequalities for interacting particle systems with duality, J. Stat. Phys. 141 (2010), 242-263.
  21. Karlin S., McGregor J., On a genetics model of Moran, Proc. Cambridge Philos. Soc. 58 (1962), 299-311.
  22. Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010.
  23. Kozubowski T.J., Podgórski K., Distributional properties of the negative binomial Lévy process, Probab. Math. Statist. 29 (2009), 43-71.
  24. Kuan J., Stochastic duality of ASEP with two particle types via symmetry of quantum groups of rank two, J. Phys. A 49 (2016), 115002, 29 pages.
  25. Kuan J., An algebraic construction of duality functions for the stochastic $\mathcal{U}_q\bigl( A_n^{(1)}\bigr)$ vertex model and its degenerations, Comm. Math. Phys. 359 (2018), 121-187, arXiv:1701.04468.
  26. Last G., Stochastic analysis for Poisson processes, in Stochastic Analysis for Poisson Point Processes,Bocconi Springer Ser., Vol. 7, Bocconi University Press, 2016, 1-36, arXiv:1405.4416.
  27. Last G., Penrose M., Lectures on the Poisson process, IMS Textb., Vol. 7, Cambridge University Press, Cambridge, 2018.
  28. Liggett T.M., Interacting particle systems, Classics Math., Springer, Berlin, 2005.
  29. Lytvynov E., Orthogonal decompositions for Lévy processes with an application to the gamma, Pascal, and Meixner processes, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), 73-102, arXiv:math.PR/0204087.
  30. Lytvynov E., Polynomials of Meixner's type in infinite dimensions-Jacobi fields and orthogonality measures, J. Funct. Anal. 200 (2003), 118-149, arXiv:math.CA/0203026.
  31. Matthes K., Warmuth W., Mecke J., Bemerkungen zu einer Arbeit: ''Integral and differential characterizations of the Gibbs process'', Math. Nachr. 88 (1979), 117-127.
  32. Meyer P.-A., Quantum probability for probabilists, Lecture Notes in Math., Vol. 1538, Springer, Berlin, 1993.
  33. Moran P.A.P., Random processes in genetics, Proc. Cambridge Philos. Soc. 54 (1958), 60-71.
  34. Mueller C., Stochastic PDE from the point of view of particle systems and duality, in Stochastic Analysis: a Series of Lectures, Progr. Probab., Vol. 68, Birkhäuser, Basel, 2015, 271-295.
  35. Rafler M., Gaussian loop- and Pólya processes: a point process approach, Ph.D. Thesis, Universität Potsdam, 2009, available at https://publishup.uni-potsdam.de/frontdoor/index/index/docId/3841.
  36. Reed M., Simon B., Methods of modern mathematical physics. I. Functional analysis, Academic Press, Sad New York, 1980.
  37. Reed M., Simon B., Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975.
  38. Schmüdgen K., Unbounded self-adjoint operators on Hilbert space, Grad. Texts in Math., Vol. 265, Springer, Dordrecht, 2012.
  39. Serfozo R.F., Point processes, in Stochastic Models, Handbooks Oper. Res. Management Sci., Vol. 2, North-Holland, Amsterdam, 1990, 1-93.
  40. Shiga T., A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes, J. Math. Kyoto Univ. 30 (1990), 245-279.
  41. Śniady P., Quadratic bosonic and free white noises, Comm. Math. Phys. 211 (2000), 615-628, arXiv:math-ph/0303048.
  42. Sturm A., Swart J.M., Völlering F., The algebraic approach to duality: an introduction, in Genealogies of Interacting Particle Systems, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., Vol. 38, World Scientific Publishing, Hackensack, NJ, 2020, 81-150, arXiv:1802.07150.
  43. Talagrand M., What is a quantum field theory? A first introduction for mathematicians, Cambridge University Press, Cambridge, 2022.
  44. Wagner S., Orthogonal intertwiners for infinite particle systems in the continuum, Stochastic Process. Appl. 168 (2024), 104269, 18 pages, arXiv:2305.03367.

Previous article  Next article  Contents of Volume 20 (2024)