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Abstract. The problem of existence of symmetric informationally-complete positive oper-
ator-valued measures (SICs for short) in every dimension is known as Zauner’s conjecture
and remains open to this day. Most of the known SIC examples are constructed as an
orbit of the Weyl–Heisenberg group action. It appears that in these cases SICs are invariant
under the so-called canonical order-three unitaries, which define automorphisms of the Weyl–
Heisenberg group. In this note, we show that those order-three unitaries appear in projective
unitary representations of the triangle group (3, 3, 3). We give a full description of such
representations and show how it can be used to obtain results about the structure of canonical
order-three unitaries. In particular, we present an alternative way of proving the fact that
any canonical order-three unitary is conjugate to Zauner’s unitary if the dimension d > 3 is
prime.
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1 Introduction

Let H = Cd be a complex Hilbert space of finite dimension d. A positive operator-valued measure
(POVM for short) is a measure whose values are positive semi-definite Hermitian matrices Mi

on H. That is, M †
i = Mi ⩾ 0 and

∑n
i=1Mi = I if the set {Mi} has a finite size n.

A POVM is a model of a general measurement that one can perform on a quantum system
with d degrees of freedom. Matrices Mi correspond to distinguishable outcomes labelled by the
indices i. If ρ is a density matrix on H, which encodes a state of the quantum system, then the
outcome labelled i appears with probability

Prob(i) = Tr(ρMi)

in a measurement event. The von Neumann (projective or PVM) measurements are a spe-
cial case of POVMs, where each Mi is the projection onto the i-th subspace in an orthogonal
decomposition H = ⊕iHi.

A symmetric informationally-complete POVM (SIC-POVM or just SIC) is a POVM {Mi}
of size n = d2, where each matrix Mi = 1

d |vi⟩⟨vi| has rank one and for each i ̸= j, we have
Tr(MiMj) = const = 1

d+1 . It corresponds to a set of d2 pure states |vi⟩ ∈ H such that

| ⟨vi|vj⟩ |2 =
1

d + 1
, i ̸= j,

d2∑
i=1

|vi⟩⟨vi| = dI.

By knowing the probabilities Tr(ρMi) = ⟨ρ,Mi⟩HS of the outcomes {i} (here HS stands for
the Hilbert–Schmidt inner product), we can completely reconstruct the quantum state ρ, which
justifies the naming. Note that it is not possible with a POVM of a lesser size n < d2. In a real
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scenario of measuring copies of ρ multiple times, we get Tr(ρMi) as an estimate based on the
frequency of outcome i. This gives us an estimate ρ̂ of ρ. One can show that the expectation
of ||ρ− ρ̂||2HS, averaged over all ρ which are unitary equivalent to a fixed one, is minimized exactly
for SICs amongst other minimal informationally-complete POVMs [18]. This makes SICs the
best choice for a “standard” unbiased measurement in quantum mechanics.

The problem is that we do not know how to construct them in general. Initially, SICs’
existence in every dimension d was conjectured by Zauner in [21] (and independently by Renes
et al. in [16]). Since then a vast body of research was carried out (e.g., [1, 2, 3, 4, 5, 6, 8, 10, 11,
13, 17, 19, 22]). Either exact or numerical solutions have been found in all dimensions d ≤ 193
and some others. The current state-of-the-art was achieved in [4, 5], where authors proposed
a recipe for finding SICs in dimensions of the form d = n2 + 3 and verified it in a number of
dimensions, including d = 39604. However, it remains unproven in general, and it is also related
to unsolved problems in number theory.

Most known SICs are constructed as an orbit of the action of the Weyl–Heisenberg group
WH(d). It is a group generated by the clock and shift matrices defined by

Z |k⟩ = ωk |k⟩ , X |k⟩ = |k + 1⟩ ,

respectively, where ω = exp
(
2πi
d

)
and {|k⟩ | k ∈ Zd} is the standard basis in H.

For a unit vector |f⟩ ∈ H, the set
{
XkZ l |f⟩ | k, l ∈ Zd

}
is called a WH SIC if it is a SIC,

and |f⟩ is called a fiducial vector in such a case.
In any dimension d, there exists an order-three unitary Z, called Zauner’s unitary, which

gives an automorphism of WH(d) under the conjugation (see Section 2 for details). The strong
version of Zauner’s conjecture states that in every dimension d there exists a fiducial vector |f⟩
which is an eigenvector of Z. This means that the corresponding WH SIC is invariant under
the action of Z. Moreover, the collected evidence suggests that any WH SIC is invariant under
a canonical order-three unitary, which is related to Z anyway. This makes it essential for SICs’
constructions, yet we do not have an explanation for this either. Canonical order-three unitaries
are also important in other problems, see, e.g., [7].

In this paper, we show that Z along with the group WH(d) appear in projective unitary repre-
sentations of the ordinary triangle group ∆(3,3,3), which can be abstractly defined by generators
and relations

∆(3,3,3) =
〈
a, b, c | a3 = b3 = c3 = 1, abc = 1

〉
.

Such representations were first obtained in [14], but here we give their simplified description
with a modified proof in Section 3. We then show how to use it to investigate properties of
canonical order-three unitaries in Section 4. In particular, we give an alternative way of proving
the fact that any canonical order-three unitary is conjugate to Zauner’s unitary if the dimension
d > 3 is prime. We hope that the symmetric nature of ∆(3,3,3) could provide insights into the
importance of Z for SIC constructions.

2 Weyl–Heisenberg group and its symmetries

In this section, we mainly follow Appleby [2]. Recall that the Weyl–Heisenberg group is generated
by the clock and shift matrices Z, X:

Z =


1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωd−1

 , X =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ,
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where ω = exp
(
2πi
d

)
. They satisfy Zd = Xd = I and a kind of commutation relation ZX =

ωXZ. It is easy to see that each element of the generated group has the form ωmXkZ l, where
k, l,m ∈ Zd. For further constructions, it is convenient to also add the factor τ = − exp

(
πi
d

)
to it. We thus define the group by WH(d) = ⟨X,Z, τI⟩. Note that τ2 = ω and if d is odd then
τ = ω

d+1
2 so it adds nothing, but doubles the group in even dimensions. In any case, for the

quotient over the group center, denoted by ⟨ξI⟩, we have WH(d)/⟨ξI⟩ ≃ Zd × Zd.
The d2 displacement matrices for a = (a1, a2) ∈ Z2

d defined by

Da = τa1a2Xa1Za2 ∈ WH(d)

are cosets representatives of the quotient group WH(d)/⟨ξI⟩. They satisfy the relations DaDb =

τ ⟨a,b⟩Da+b, where ⟨a,b⟩ = a2b1 − b2a1 is the symplectic form. In particular, D†
a = D−a.

The Clifford group Cli(d) is defined as the group of unitary automorphisms of the Weyl–
Heisenberg group. That is,

Cli(d) =
{
A ∈ Uni(d) | A†WH(d)A = WH(d)

}
.

Its importance comes from the fact that if |f⟩ is a WH SIC fiducial vector, then so is A |f⟩
(for a different SIC, in general). Thus WH SIC solutions are naturally grouped in orbits of the
Clifford group action.

The Cli(d) group has the following structure. Let d̄ = d if d is odd and d̄ = 2d otherwise.
By SL(2,Zd̄), we denote the group of 2×2 symplectic matrices M = ( m1 m2

m3 m4 ) with entries from Zd̄

and condition det(M) = 1. For a symplectic matrix M , its symplectic unitary is defined (up to
a scalar factor) by

AM =
∑

r,s∈Zd

τm
−1
2 (m1s2−2rs+m4r2) |r⟩⟨s|

if m−1
2 (a multiplicative inverse) exists in Zd̄. Otherwise, one has to decompose M into a product

of matrices in which m−1
2 exists and then take the product of its symplectic unitaries.

The group SL(2,Zd̄) acts naturally on Z2
d as on vectors of size 2, therefore we can define

the semidirect product SL(2,Zd̄) ⋉ Z2
d with respect to this action. It can be checked that

∀M ∈ SL(2,Zd̄), ∀a ∈ Z2
d

AMDaA
†
M = DMa.

This implies AM ∈ Cli(d). Define A[M,b] = DbAM , b ∈ Z2
d. It was proved [2, Theorem 1] that

the map [M,b] −→ A[M,b] is a surjective homomorphism from SL(2,Zd̄) ⋉ Z2
d to Cli(d)/⟨ξI⟩, it

is an isomorphism in odd dimensions and has a kernel of size 8 in even dimensions.
Note that A[M,0] = AM just permutes the set of displacement matrices, while A[M,a] with

a ̸= 0 also adds phases to them. For A ∈ Cli(d)/⟨ξI⟩, by MA ∈ SL(2,Zd̄) we denote a symplectic
matrix such that A = A[MA,a] for some a ∈ Z2

d (MA is not unique in even dimensions, but this
will be irrelevant to us).

A prominent example of an automorphism of WH(d) is the discrete Fourier transform matrix

F =
1√
d

∑
r,s∈Zd

ωrs |r⟩⟨s| =
1√
d


1 1 1 · · · 1
1 ω ω2 · · · ωd−1

1 ω2 ω4 · · · ω2(d−1)

...
...

...
. . .

...

1 ωd−1 ω2(d−1) · · · ω(d−1)(d−1)

 .

The corresponding symplectic matrix of F is MF =
(
0 −1
1 0

)
, F = AMF

. It exchanges the clock
and shift matrices, FXF † = Z, FZF † = X−1, and has order four for d > 2.
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On the other hand, Zauner’s unitary Z has the symplectic matrix MZ =
(
0 −1
1 −1

)
, Z = AMZ

,
and up to a scalar equals to

Z =
e

iπ(d−1)
12

√
d

d−1∑
r,s=0

τ r
2+2rs |r⟩ ⟨s| = e

iπ(d−1)
12


1 0 0 · · · 0
0 τ 0 · · · 0
0 0 τ4 · · · 0
...

...
...

. . .
...

0 0 0 · · · τ (d−1)2

F,

where the multiplier e
iπ(d−1)

12 ensures that Z3 = I. The matrix Z permutes WH(d) by the rules

ZXZ† = Z, ZZZ† = τX−1Z−1, ZD(a1,a2)Z
† = D(−a2,a1−a2).

For a unitary A ∈ Cli(d), its Clifford trace is defined by Trc(A) = Tr(MA) mod d. This is
well-defined because it does not depend on the choice of MA. Clearly, Zauner’s unitary and its
conjugates in the Clifford group have Clifford trace −1. In general, if Trc(A) = −1 then A is of
order three (i.e., we can pick a phase such that A3 = I and we always assume so in what follows),
unless A = I in dimension three. Such unitaries are called canonical order-three unitaries.

While Zauner conjectured that a WH SIC fiducial vector |f⟩ can be found as an eigenvector
of Z, the collected evidence suggests that in any case |f⟩ is an eigenvector of a canonical order-
three unitary. This observation became known as the Appleby–Zauner conjecture. It was proved
in [10] that any canonical order-three unitary is conjugate to Zauner’s if the dimension d > 3 is
prime. It is not true in general. Theorem 9.1 in [8] gives the characterization of their conjugacy
classes. They are given by the sets of representatives

{Z}, d ̸= 0 mod 3,
{
Z,Z2

}
, d = 0 mod 9 or d = 3,{

Z,Z2, AM1

}
, d = 3 mod 9 and d ̸= 3,{

Z,Z2, AM2

}
, d = 6 mod 9,

where

M1 =

(
1 3

4d−3
3 −2

)
, M2 =

(
1 3

2d−3
3 −2

)
mod d̄.

Note that the conjugacy class {M1} corresponds to Fa in [17, 19], where WH SIC fiducial
vectors, which are eigenvectors of AM1 , found for all small d = 3(3k + 1). For some reason, no
WH SIC fiducials are found as eigenvectors of AM2 when d = 3(3k + 2).

In addition to Clifford unitaries, we can consider anti-unitary operators that also define
WH(d) automorphisms. Let Ĵ be the anti-unitary operator that acts on H by the rule

Ĵ

( ∑
r∈Zd

cr |r⟩
)

=
∑
r∈Zd

c̄r |r⟩ .

Its conjugate action on WH(d) is described by

ĴD(a1,a2)Ĵ
† = D(a1,−a2), ∀(a1, a2) ∈ Z2

d.

In fact, the disjoint union

ECli(d) = Cli(d) ∪
{
ĴA | A ∈ Cli(d)

}
forms the extended Clifford group. In this group a product of two anti-unitaries is a unitary
operator, while anti-unitary times unitary remains anti-unitary. If we denote by ESL(2,Zd̄)
the group of symplectic matrices with det(M) = ±1, then by [2, Theorem 2] the extended
map [M,a] −→ DaAM is a surjective homomorphism from ESL(2,Zd̄) ⋉ Z2

d to ECli(d)/⟨ξI⟩,
under which Ĵ corresponds to

(
1 0
0 −1

)
and anti-unitaries in general to M with det(M) = −1.
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3 Triangle group and its representations

The ordinary triangle group ∆(3,3,3) (such groups are also known as von Dyck groups) can be
defined abstractly by the generators and relations

∆(3,3,3) =
〈
a, b, c | a3 = b3 = c3 = 1, abc = 1

〉
.

It has a nice realization as motions of the real plane [15]. Elements a, b, c can be represented
by 2π/3 rotations around the vertices of an equilateral triangle with side length 1, see Figure 1.

Figure 1. The realization of ∆(3,3,3) as motions of the plane.

The elements u = a2b, v = aba, w = ba2 = u−1v−1 correspond to the translations of
the pattern (see Figure 1) by one step of length

√
3 in the directions north ↑, southwest ↙

(240◦ north) and southeast ↘ (120◦ north), respectively. They generate the abelian subgroup
⟨u, v, w⟩ ≃ Z × Z of translations. Note that the horizontal shift of length 1 preserves the
alternating triangles pattern, but not the additional hexagonal. This is not an element of ∆(3,3,3).

One can see that ∆(3,3,3)/⟨u, v, w⟩ ≃ Z3. Moreover,

∆(3,3,3) ≃ Z3 ⋉ ⟨u, v, w⟩ ≃ Z3 ⋉ (Z× Z),

where Z3 acts by shifting the generators u → v → w → u. It follows from the identities
a−1ua = v, a−1va = w and a−1wa = u.

We are interested in projective unitary representations of ∆(3,3,3). Denote the set of complex
units by S1 = {ξ ∈ C | |ξ| = 1}.

A projective unitary representation of a group G is a homomorphism from G to the group
PUni(n) = Uni(n)/⟨ξI⟩ of projective unitaries. Alternatively, it is a map π : G −→ Uni(n) that
satisfies

π(xy) = π(x)π(y) · ξ(x, y), ξ(x, y) ∈ S1.

Let π be any such representation of ∆(3,3,3). It is easy to see that (π(a))3, (π(b))3, (π(c))3 ∈{
γI | γ ∈ S1

}
. Hence, we can choose scalars ξa, ξb, ξc ∈ S1 such that

A3 = B3 = C3 = I, ABC = λI, (3.1)

where A = ξaπ(a), B = ξbπ(b), C = ξcπ(c) and λ ∈ S1. Henceforth, we focus on solving
equation (3.1).
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Recall that two solutions (A,B,C) and (A′, B′, C ′) are unitary equivalent if and only if

U(A,B,C)U † =
(
UAU †, UBU †, UCU †) = (A′, B′, C ′)

for some U ∈ Uni(n). A unitary representation (A,B,C) is irreducible if and only if its not
equivalent to (A′, B′, C ′)⊕ (A′′, B′′, C ′′) = (A′⊕A′′, B′⊕B′′, C ′⊕C ′′). Equivalently, there is no
proper subspace which is invariant for all A, B, C.

In fact, the irreducible unitary representations of equation (3.1) were classified by Livinskyi
and Radchenko in [14]. But here we present a modified and more symmetric exposition of
the results and also show the relation with Zauner’s unitary. Additionally, note that there is
a general (Mackey’s) theory of finding representations of virtually abelian groups [12].

By computing the determinants of expressions from equation (3.1), one can conclude that
λ3n = 1, so λ is a root of unity. Denote µ = λ3 and let

U = A2B, V = ABA, W = BA2.

From equation (3.1), it follows that

UV = µV U, V W = µWV, WU = µUW, UVW = µI, WV U = I. (3.2)

The key idea is that we find irreducible representations of the equation (3.2) at first. Then we
find how (U, V,W ), that comes from an irreducible solution (A,B,C), can split into irreducible
parts. The representation theory of the relation UV = µV U is well known [9, 20]. If µ =
exp(2πki/d) = ωk, gcd(k, d) = 1, then there are only d-dimensional irreducible representations
which can be given by

Uα = αZk, Vβ = βX,

where α, β ∈ S1 are parameters of the representation. Two such representations are equivalent
if and only if

(
α′d, β′d) =

(
αd, βd

)
. Thus the pair

(
αd, βd

)
specifies a representation uniquely.

Packed together, the irreducible d-dimensional solutions for U , V , W in equation (3.2) can be
described by

Uα = αZk = αD(0,k), Vβ = βX = βD(1,0), Wγ = γτkX−1Z−k = γD(−1,−k), (3.3)

where αβγ = τk. And thus αdβdγd = τdk = (−1)k(d−1).

Two representations (Uα′ , Vβ′ ,Wγ′) and (Uα, Vβ,Wγ) are equivalent if and only if(
α′d, β′d, γ′d

)
=

(
αd, βd, γd

)
.

Let us return to the initial problem of finding irreducible solutions (A,B,C) of equation (3.1).
In general, the triple (U, V,W ) =

(
A2B,ABA,BA2

)
, up to equivalence, decomposes into a direct

sum of irreducible summands given by equation (3.3). It corresponds to a decomposition of H
into invariant subspaces of (U, V,W ), although this decomposition may not be unique if the
summands are equivalent. Let H1 ⊆ H be one of the invariant subspaces of dimension d.
Then the subspaces H2 = A(H1) and H3 = A2(H1) are also invariant for (U, V,W ), because
U(H2) =

(
AV A−1

)
(H2) = AV (H1) = A(H1) = H2 and similarly for H3 and V,W . Since

H1 + H2 + H3 is invariant for A as well as for U , V , W we immediately obtain that irreducible
(A,B,C) are at most 3d-dimensional.

Let us be more specific. Pick an orthonormal basis in H1 so that

(U, V,W )|H1
= (Uα, Vβ,Wγ),
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for some parameters (α, β, γ) as in equation (3.3). This also fixes bases in A(H1) and A2(H1)
accordingly. Then

(U, V,W )|H2
=

(
A(V,W,U)A−1

)
|A(H1)

= (V,W,U)|H1
= (Vβ,Wγ , Uα),

(U, V,W )|H3
=

(
A2(W,U, V )A−2

)
|A2(H1)

= (W,U, V )|H1
= (Wγ , Uα, Vβ).

Consider the symplectic matrix

MZk
=

(
0 −k−1

k −1

)
∈ SL(2,Zd̄)

along with the symplectic unitary Zk ∈ Cli(d) it generates (we take a scalar such that Z3
k = 1).

Zk has order three and permutes X → Zk → D(−1,−k) → X. Hence,

Zk(Vβ,Wγ , Uα)Z†
k = (Uβ, Vγ ,Wα), Z2

k(Wγ , Uα, Vβ)Z2†
k = (Uγ , Vα,Wβ).

What we get is that the shift (Uα, Vβ,Wγ) → (Vβ,Wγ , Uα) in a solution (3.3) corresponds
to the change of parameters (α, β, γ) → (β, γ, α). Three shifts (Uα, Vβ,Wγ), (Vβ,Wγ , Uα),
(Wγ , Uα, Vβ) are inequivalent unless αd = βd = γd, which can happen only in three cases
where αd = 3

√
(−1)k(d−1) for three cubic root choices. If shifts are inequivalent, then H1, H2, H3

should be orthogonal to each other according to the representation theory. In this case, the
representation of (A,B,C) is unique for

(
αd, βd, γd

)
and can be written as

A =

0 0 I
I 0 0
0 I 0

 , B =

 0 0 Wγ

Uα 0 0
0 Vβ 0

 , C = λ

 0 0 U †
α

V †
β 0 0

0 W †
γ 0

 , (3.4)

in the chosen above basis in H1 ∪A(H1) ∪A2(H1), with

U =

Uα 0 0
0 Vβ 0
0 0 Wγ

 , V =

Vβ 0 0
0 Wγ 0
0 0 Uα

 , W =

Wγ 0 0
0 Uα 0
0 0 Vβ

 .

Let us consider the remaining situation where αd = βd = γd = 3
√

(−1)k(d−1), which we call
the singularity case. We can assume that α = β = γ =

3
√
τk = ωl

3 exp
(πik(d+1)

3d

)
, l = 0, 1, 2, where

ω3 = exp
(
2πi
3

)
. Define

H ′
1 =

{
|f⟩ + A−1Zk |f⟩ + A−2Z2

k |f⟩ | |f⟩ ∈ H1

}
⊂ H,

H ′
2 =

{
|f⟩ + ω3A

−1Zk |f⟩ + ω2
3A

−2Z2
k |f⟩ | |f⟩ ∈ H1

}
⊂ H,

H ′
3 =

{
|f⟩ + ω2

3A
−1Zk |f⟩ + ω3A

−2Z2
k |f⟩ | |f⟩ ∈ H1

}
⊂ H.

One can see that H ′
1 is invariant for A and

U(|f⟩ + A−1Zk |f⟩ + A−2Z2
k |f⟩) = U |f⟩ + A−1WZk |f⟩ + A−2V Z2

k |f⟩
= Uα |f⟩ + A−1WαZk |f⟩ + A−2VαZ

2
k |f⟩

= Uα |f⟩ + A−1ZkUα |f⟩ + A−2Z2
kUα |f⟩ ∈ H ′

1,

so it is invariant for U and thus for V and W too. The same holds for H ′
2, H ′

3. Note that
H ′

1 + H ′
2 + H ′

3 = H1 + H2 + H3 and dimH ′
i is either d or 0 for each i due to invariance.

Hence, dimH ′
i = d for at least one index i. But this means that irreducible representations of

(A,B,C) are at most d-dimensional in this case and we should have H1 = H2 = H3 from the
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beginning. It follows that A is an automorphism of ⟨U, V,W ⟩ = ⟨Uα, Vα,Wα⟩ since V = A−1UA,
W = A−2UA2. From the description of Cli(d), we know that A coincides with Zk up to ω3 factor.
We conclude that there are three inequivalent representations

A = ωj
3Zk, B = ωj

3ZkUα, C = λωj
3U

†
αZk,

U = Uα, V = Vα, W = Wα, (3.5)

where j = 0, 1, 2 for each α =
3
√
τk, so that is 9 in total. Moreover, the representation (3.4)

decomposes exactly into the three parts that correspond to the values of j = 0, 1, 2 each, where
the invariant subspaces are H ′

j+1. We summarize this in the following theorem, which refines
[14, Theorem 5]:

Theorem 3.1. Let µ = λ3 = exp(2πki/d) = ωk, gcd(k, d) = 1. Consider the set of pa-
rameters (α, β, γ) ∈ S1 × S1 × S1 with αβγ = τk and the equivalence relation

(
α′d, β′d, γ′d

)
=(

αd, βd, γd
)
. Then equations (3.4) define inequivalent irreducible 3d-dimensional representations

of (3.1), except three cases where αd = βd = γd = 3
√

(−1)k(d−1) = ωl
3(−1)k(d−1), l = 0, 1, 2. In

each of those cases, equations (3.4) split into three inequivalent irreducible d-dimensional repre-
sentations (3.5), generating nine in total.

In the simplest case, λ3 = 1 and d = k = 1, ω = τ = 1. For three complex units with
αβγ = 1, we have Uα = α, Uβ = β, Uγ = γ and equation (3.4) reads as

A =

0 0 1
1 0 0
0 1 0

 , B =

0 0 γ
α 0 0
0 β 0

 , C = λ

0 0 ᾱ
β̄ 0 0
0 γ̄ 0

 .

This solution will be reducible if α = β = γ = ωl
3. Since Zk = 1 (up to ω3 factor), equa-

tions (3.5) give the irreducible parts where j = 0, 1, 2,

A = ωj
3, B = ωj+l

3 , C = λωj−l
3 .

We remark that in general Ud
α = αdI and similarly for β, γ. This helps to understand how,

in a general representation, the tuple (U, V,W ) decomposes into irreducible parts. We will look
at the spectral decompositions of Ud, V d and W d.

4 Canonical order-three unitaries

The matrix Zk is a canonical order-three unitary and we have just seen its connection to
∆(3, 3, 3). In this section, we show that any canonical order-three unitary appears in repre-
sentations of the triangle group ∆(3, 3, 3) and explain how this can be used.

The following lemma can be checked by a straightforward computation.

Lemma 4.1. Let AM ∈ Cli(d) be a canonical order-three unitary with M = ( m1 m2
m3 m4 ) ∈ SL(2,Zd̄),

so that m1 + m4 = −1, m1m4 −m2m3 = 1, M3 = I mod d̄. Then ∀a = (a1, a2) ∈ Z2
d

(Da)
(
AMDaA

†
M

)(
A2

MDaA
2†
M

)
= τ−a21m3+a1a2(m1−m4)+a22m2I,

(Da)
(
A2

MDaA
2†
M

)(
AMDaA

†
M

)
= τ−(−a21m3+a1a2(m1−m4)+a22m2)I.

In particular,

(Z)
(
AMZA†

M

)(
A2

MZA2†
M

)
= τm2I, (Z)

(
A2

MZA2†
M

)(
AMZA†

M

)
= τ−m2I.
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Note that this lemma does not hold for non-canonical order-three unitaries, since there would
be no scalar operator on the right-hand side. It also can be generalized for A[M,b], but we will
try to keep things simpler here.

Let us put A = AM , U = ϵZ and correspondingly B = AU , C = λU−1A, where ϵ, λ ∈ S1.
We have that A3 = I and

B3 =
(
AUA−1

)(
A2UA−2

)
(U) = ϵ3τm2I,

C3 = λ3
((
A2UA−2

)(
AUA−1

)
(U))−1 = λ3ϵ−3τm2I, ABC = λI.

By setting appropriate ϵ and λ, we conclude the following.

Theorem 4.2. For a canonical order-three unitary AM ∈ Cli(d), the tuple

(A,B,C) =
(
AM , ϵAMZ, λϵ−1Z−1AM

)
with the corresponding

(U, V,W ) = (ϵZ, ϵD(−m2,m1), ϵD(m2,m4)) (4.1)

is a solution of equation (3.1) if ϵ3 = τ−m2, λ3 = ω−m2.

One can find that this theorem can be generalized for A[M,b] with b ̸= 0, so that any
canonical order-three unitary gives rise to a representation of the triangle group. But the case
of matrices A[M,0] is principal. We now use Theorem 3.1 to investigate their properties.

At first, observe that

(U,W ) =
(
ϵZ, ϵAMZA−1

M

)
= (ϵZ, ϵD(m2,m4)) =

(
ϵZ, ϵτm2m4Xm2Zm4

)
. (4.2)

It follows immediately that if m2 is coprime with d then U and W generate the Weyl–Heisenberg
group up to phases, that is, ⟨U,W ⟩/⟨ξI⟩ = WH(d)/⟨ξI⟩. Thus (U, V,W ) should be irreducible,
and since µ = λ3 = ω−m2 is a root of 1 of order d, we have the singularity case here. From
equation (3.5), it follows that there is a unitary T that satisfies

AM = T
(
ωj
3Z−m2

)
T †, ϵZ = T (αZ−m2)T †, ϵD(m2,m4) = T (αD(−1,m2))T

†

for some j = 0, 1, 2 and α3d = (−1)−m2(d−1). Hence T ∈ Cli(d) and AM is conjugate to Z−m2

(up to ω3 factor) in the Clifford group.
If d > 3 is prime and m2 = 0 mod d, then we can consider the conjugation(

a 1
0 a−1

)(
m1 0
m3 m4

)(
a 1
0 a−1

)−1

=

(
∗ a(m4 −m1) −m3

∗ ∗

)
mod d.

We have that m4−m1 ̸= 0 mod d. So there exists a ∈ Zd such that a(m4−m1)−m3 = −1 mod d.
And so we have the conjugation to Z1 by the previous consideration.

Observe that(
l−1 0
0 l

)(
0 −k−1

k −1

)(
l 0
0 l−1

)
=

(
0 −k−1l−2

kl2 −1

)
= MZkl2

mod d,

hence Zk ≃ Zkl2 , where by “≃” we denote equivalence in the Clifford group. This means Zk ≃ Z1

if k ̸= 0 is a quadratic residue modulo d and Zk ≃ Zk0 for some fixed non-residue k0 otherwise.
But we also have(

a 1
0 a−1

)(
0 −1
1 −1

)(
a−1 −1
0 a

)
=

(
∗ −

(
a2 + a + 1

)
∗ ∗

)
,
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which implies Z1 ≃ Za2+a+1 for any a ∈ Zd. If we prove that a2 + a + 1 can be a quadratic
non-residue for some a then the conclusion is Zk ≃ Z1 for any k ̸= 0. Assume the contrary, that
a2 + a+ 1 is a residue for any a. Consider 4

(
a2 + a+ 1

)
= (2a+ 1)2 + 3. This means that x2 + 3

is a residue for any x, i.e., the set of residues is periodic with period 3, and so any number is
a residue, a contradiction. We thus showed that for a prime d > 3 any canonical order-three
unitary AM is conjugate to Zauner’s unitary Z1 in the Clifford group, which was proved in [10]
by relying on the number theory more heavily. If d = 3, then one can find that Z1 ̸≃ Z2 ≃ Z2

1.
In the general case, where m2 and d are not coprime, the described approach still can be

useful. Assume that n = gcd(m2, d). Then µ = ω−m2 = ω
−m2/n
d/n . Again, let us look at the de-

composition of (U,W ) from equation (4.2). Up to phases, ⟨U,W ⟩ = ⟨Z,Xm2⟩ which decomposes
into a sum of n d/n-dimensional irreducible parts. Let those parts correspond to the parameters(
α
d/n
i , β

d/n
i , γ

d/n
i

)
, i = 0, 1, . . . , n−1 as in equation (3.3). By looking at the spectrum of (ϵZ)d/n,

we find that

n−1⋃
i=0

{
ϵd/nωi

n

}
=

n−1⋃
i=0

{
α
d/n
i

}
.

Hence, we may think that ∀i αd/n
i = ϵd/nωi

n. It follows that those parts are inequivalent. It is
easy to see that they correspond to the invariant subspaces

Hi =

d/n−1⊕
l=0

{|i + m2l⟩} (4.3)

since

(ϵZ)d/n |i + m2l⟩ = ϵd/nω
(i+m2l)d/n
d |i + m2l⟩ = ϵd/nωi

n |i + m2l⟩ .

Similarly, we have

(ϵD(−m2,m1))
d/n |i + m2l⟩ = ϵd/nτ−m2m1(d/n)2ωim1

n |i + m2l⟩ ,

(ϵD(m2,m4))
d/n |i + m2l⟩ = ϵd/nτm2m4(d/n)2ωim4

n |i + m2l⟩ .

Recall that τd = (−1)d−1. In total, for any i ∈ {0, 1, . . . , n− 1},(
α
d/n
i , β

d/n
i , γ

d/n
i

)
=

(
ϵd/nωi

n, ϵ
d/nωim1

n (−1)(d−1)(m2/n)m1(d/n), ϵd/nωim4
n (−1)(d−1)(m2/n)m4(d/n)

)
.

For each i, it is either the singularity case, i.e., α
d/n
i = β

d/n
i = γ

d/n
i , or non-singularity, but those

should come in triples which are shifts of each other.
As an example, let us look at the case where dimension d = 3(3k + 1) > 3 is odd and

M =

(
1 3

d−3
3 −2

)
mod d.

It is known that in these dimensions any canonical order-three unitary is conjugate to either Z, Z2

or AM [8]. SIC fiducial vectors were found in the eigenspace of AM in small dimensions (this
case is denoted by Fa in [19]).

By Theorem 4.2, we can set ϵ = τ−1, λ = ω−1 and so ϵd/3 = ω3, µ = λ3 = ω−1
d/3. We have

that there are 3 irreducible d/3-dimensional parts in the decomposition of (U, V,W ) that come
from equation (4.1). For i = 0, 1, 2, we obtain(

α
d/3
i , β

d/3
i , γ

d/3
i

)
=

(
ωi+1
3 , ωi+1

3 , ωi+1
3

)
,



SICs and the Triangle Group (3, 3, 3) 11

hence it is the singularity case. This means that invariant subspaces Hi from equation (4.3) are
also invariant for AM and that on each Hi unitary AM is conjugate to Z−1 from Cli(d/3).

Another way to see this is to consider the tensor decomposition of H under which WH(d) splits
as a tensor product of WH(d/3) and WH(3). In general, for odd and relatively prime n1, n2, we
can define the tensor product ⊗̂ for Cn1n2 by

|i mod n1n2⟩ = |i mod n1⟩ ⊗̂ |i mod n2⟩ ,

which corresponds to a permutation of the standard basis in Cn1n2 . Under this tensor product,
we have that for a, b ∈ Zn1n2

D
(n1n2)
(a,b) = D

(n1)

(a,n−1
2 b)

⊗̂D
(n2)

(a,n−1
1 b)

,

where n−1
2 is inverse of n2 mod n1 and n−1

1 is inverse of n1 mod n2 (see [1, 3]). Conversely, for
any p, q ∈ Zn1 , r, s ∈ Zn2

D
(n1)
(p,q)⊗̂D

(n2)
(r,s) = D

(n1n2)

(pn2n
−1
2 +rn1n

−1
1 ,qn2+sn1)

.

Moreover, under this tensor product the Clifford group splits as well. One can verify that
for M ′ ∈ SL(2,Zn1), M ′′ ∈ SL(2,Zn2), we have

AM = AM ′⊗̂AM ′′

up to a complex unit factor, where

M = n2

(
n−1
2 0
0 1

)
M ′

(
1 0

0 n−1
2

)
+ n1

(
n−1
1 0
0 1

)
M ′′

(
1 0

0 n−1
1

)
∈ SL(2,Zn1n2), (4.4)

by looking at the action of AM on the displacement operators.
In our example, we have n1 = d/3 = 3k + 1, n2 = 3 and thus n−1

1 = 1, n−1
2 = −k. From

equation (4.4), we conclude that

M ′ =

(
1 0
0 −k

)((
1 3

d−3
3 −2

)
mod d/3

)(
1 0
0 3

)
=

(
1 9
k −2

)
∈ SL(2,Z3k+1)

and

M ′′ =

(
1 0
0 1

)((
1 3

d−3
3 −2

)
mod 3

)(
1 0
0 1

)
=

(
1 0
0 1

)
∈ SL(2,Z3),

implying AM = AM ′⊗̂I3 for M ′ =
(
1 9
k −2

)
mod 3k + 1. Note that Hi = Cd/3 ⊗ |i⟩ = Cd/3⊗̂ |i⟩,

hence AM acts as the canonical order-three unitary AM ′ ∈ Cli(3k+ 1) on each Hi which fits our
conclusion obtained before. And we also get that AM ′ ≃ Z−1 in an alternative way.

As a final remark, we add that there is also a notion of the full triangle group ∆(3, 3, 3).
This group can be obtained from the ordinary ∆(3, 3, 3) by adding a reflection along the side
of fiducial triangle in Figure 1 (and so any other reflection along triangles sides is there). In
fact,

∣∣∆(3, 3, 3) : ∆(3, 3, 3)
∣∣ = 2. One can see an analogy between reflected motions in ∆(3, 3, 3)

and anti-unitaries from ECli(d). Perhaps, this connection with motions of the plane could be
utilized for the SIC constructions.

5 Conclusions

In this work, we have related canonical order-three unitaries to representations of the triangle
group (3, 3, 3). We gave the full characterization of those representations and showed how they
can be used to derive properties of canonical order-three unitaries. In particular, we have proved
some results about them which previously relied on number theory. We hope this could generate
insights about their importance for the SICs existence problem.
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