Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 043, 86 pages      arXiv:2303.14154      https://doi.org/10.3842/SIGMA.2024.043

Some Generalizations of Mirzakhani's Recursion and Masur-Veech Volumes via Topological Recursions

Hiroyuki Fuji a and Masahide Manabe bc
a) Center for Mathematical and Data Sciences and Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
b) Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
c) Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Received April 04, 2023, in final form May 09, 2024; Published online May 27, 2024

Abstract
Via Andersen-Borot-Orantin's geometric recursion, a twist of the topological recursion was proposed, and a recursion for the Masur-Veech polynomials was uncovered. The purpose of this article is to explore generalizations of Mirzakhani's recursion based on physical two-dimensional gravity models related to the Jackiw-Teitelboim gravity and to provide an introduction to various realizations of topological recursion. For generalized Mirzakhani's recursions involving a Masur-Veech type twist, we derive Virasoro constraints and cut-and-join equations, and also show some computations of generalized volumes for the physical two-dimensional gravity models.

Key words: topological recursion; Weil-Petersson volume; Masur-Veech volume; quantum Airy structure; Jackiw-Teitelboim gravity.

pdf (1775 kb)   tex (939 kb)  

References

  1. Aharony O., Gubser S.S., Maldacena J., Ooguri H., Oz Y., Large $N$ field theories, string theory and gravity, Phys. Rep. 323 (2000), 183-386, arXiv:hep-th/9905111.
  2. Alexandrov A., Cut-and-join operator representation for Kontsevich-Witten tau-function, Modern Phys. Lett. A 26 (2011), 2193-2199, arXiv:1009.4887.
  3. Alexandrov A., Cut-and-join description of generalized Brezin-Gross-Witten model, Adv. Theor. Math. Phys. 22 (2018), 1347-1399, arXiv:1608.01627.
  4. Alexandrov A., Cut-and-join operators for higher Weil-Petersson volumes, Bull. Lond. Math. Soc. 55 (2023), 3012-3028, arXiv:2109.06582.
  5. Alexandrov A., Mironov A., Morozov A., BGWM as second constituent of complex matrix model, J. High Energy Phys. 2009 (2009), no. 12, 053, 49 pages, arXiv:0906.3305.
  6. Alexandrov A., Morozov A., Mironov A., Partition functions of matrix models: first special functions of string theory, Internat. J. Modern Phys. A 19 (2004), 4127-4163, arXiv:hep-th/0310113.
  7. Altland A., Zirnbauer M.R., Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55 (1997), 1142-1161, arXiv:cond-mat/96021375.
  8. Andersen J.E., Borot G., Charbonnier S., Delecroix V., Giacchetto A., Lewański D., Wheeler C., Topological recursion for Masur-Veech volumes, J. Lond. Math. Soc. 107 (2023), 254-332, arXiv:1905.10352.
  9. Andersen J.E., Borot G., Chekhov L.O., Orantin N., The ABCD of topological recursion, Adv. Math. 439 (2024), 109473, 105 pages, arXiv:1703.03307.
  10. Andersen J.E., Borot G., Orantin N., Geometric recursion, arXiv:1711.04729.
  11. Arana-Herrera F., Counting square-tiled surfaces with prescribed real and imaginary foliations and connections to Mirzakhani's asymptotics for simple closed hyperbolic geodesics, J. Mod. Dyn. 16 (2020), 81-107, arXiv:1902.05626.
  12. Bennett J., Cochran D., Safnuk B., Woskoff K., Topological recursion for symplectic volumes of moduli spaces of curves, Michigan Math. J. 61 (2012), 331-358, arXiv:1010.1747.
  13. Bergere M., Eynard B., Universal scaling limits of matrix models, and $(p,q)$ Liouville gravity, arXiv:0909.0854.
  14. Bowditch B.H., A proof of McShane's identity via Markoff triples, Bull. London Math. Soc. 28 (1996), 73-78.
  15. Brézin E., Gross D.J., The external field problem in the large $N$ limit of QCD, Phys. Lett. B 97 (1980), 120-124.
  16. Chekhov L., Eynard B., Hermitian matrix model free energy: Feynman graph technique for all genera, J. High Energy Phys. 2006 (2006), no. 3, 014, 18 pages, arXiv:hep-th/0504116.
  17. Chen D., Möller M., Sauvaget A., Masur-Veech volumes and intersection theory: the principal strata of quadratic differentials, Duke Math. J. 172 (2023), 1735-1779, arXiv:1912.02267.
  18. Chidambaram N.K., Garcia-Failde E., Giacchetto A., Relations on $\overline{\mathcal{M}}_{g,n}$ and the negative $r$-spin Witten conjecture, arXiv:2205.15621.
  19. Crane L., Rabin J.M., Super Riemann surfaces: uniformization and Teichmüller theory, Comm. Math. Phys. 113 (1988), 601-623.
  20. Dalley S., Johnson C., Morris T., Multicritical complex matrix models and nonperturbative two-dimensional quantum gravity, Nuclear Phys. B 368 (1992), 625-654.
  21. Dalley S., Johnson C., Morris T., Wätterstam A., Unitary matrix models and $2$D quantum gravity, Modern Phys. Lett. A 7 (1992), 2753-2762, arXiv:hep-th/9206060.
  22. Delecroix V., Goujard E., Zograf P., Zorich A., Square-tiled surfaces of fixed combinatorial type: equidistribution, counting, volumes of the ambient strata, arXiv:1612.08374.
  23. Delecroix V., Goujard E., Zograf P., Zorich A., Contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes (with an appendix by Philip Engel), Astérisque 415 (2020), 223-274, arXiv:1903.10904.
  24. Delecroix V., Goujard E., Zograf P., Zorich A., Enumeration of meanders and Masur-Veech volumes, Forum Math. Pi 8 (2020), e4, 80 pages, arXiv:1705.05190.
  25. Delecroix V., Goujard E., Zograf P., Zorich A., Masur-Veech volumes, frequencies of simple closed geodesics, and intersection numbers of moduli spaces of curves, Duke Math. J. 170 (2021), 2633-2718, arXiv:2011.05306.
  26. Delecroix V., Goujard E., Zograf P., Zorich A., Large genus asymptotic geometry of random square-tiled surfaces and of random multicurves, Invent. Math. 230 (2022), 123-224, arXiv:2007.04740.
  27. Di Francesco P., Ginsparg P., Zinn-Justin J., $2$D gravity and random matrices, Phys. Rep. 254 (1995), 1-133, arXiv:hep-th/9306153.
  28. Dijkgraaf R., Verlinde H., Verlinde E., Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity, Nuclear Phys. B 348 (1991), 435-456.
  29. Dijkgraaf R., Witten E., Developments in topological gravity, Internat. J. Modern Phys. A 33 (2018), 1830029, 63 pages, arXiv:1804.03275.
  30. Do N., Norbury P., Topological recursion on the Bessel curve, Commun. Number Theory Phys. 12 (2018), 53-73, arXiv:1608.02781.
  31. Dunin-Barkowski P., Orantin N., Shadrin S., Spitz L., Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys. 328 (2014), 669-700, arXiv:1211.4021.
  32. Dyson F.J., Statistical theory of the energy levels of complex systems. I, J. Math. Phys. 3 (1962), 140-156.
  33. Edwards J.D., Klebanov I.R., Macroscopic boundaries and the wave function of the universe in the $c=-2$ matrix model, Modern Phys. Lett. A 6 (1991), 2901-2908.
  34. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Tables of integral transforms. Vol. I, McGraw-Hill Book Co., Inc., New York, 1954.
  35. Erlandsson V., Souto J., Mirzakhani's curve counting and geodesic currents, Prog. Math., Vol. 345, Birkhäuser, Cham, 2022.
  36. Eynard B., Topological expansion for the 1-Hermitian matrix model correlation functions, J. High Energy Phys. 2004 (2004), no. 11, 031, 35 pages, arXiv:hep-th/0407261.
  37. Eynard B., Orantin N., Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007), 347-452, arXiv:math-ph/0702045.
  38. Eynard B., Orantin N., Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models, arXiv:0705.3600.
  39. Fateev V., Zamolodchikov A.B., Zamolodchikov A.B., Boundary Liouville field theory. 1. Boundary state and boundary two point function, arXiv:hep-th/0001012.
  40. Felder G., Kazhdan D., Polishchuk A., Regularity of the superstring supermeasure and the superperiod map, Selecta Math. (N.S.) 28 (2022), 17, 64 pages, arXiv:1905.12805.
  41. Fukuma M., Kawai H., Nakayama R., Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity, Internat. J. Modern Phys. A 6 (1991), 1385-1406.
  42. Giacchetto A., Geometric and topological recursion and invariants of the moduli space of curves, Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2021.
  43. Ginsparg P.H., Matrix models of 2-d gravity, arXiv:hep-th/9112013.
  44. Ginsparg P.H., Moore G.W., Lectures on 2-D gravity and 2-D string theory, arXiv:hep-th/9304011.
  45. Goujard E., Volumes of strata of moduli spaces of quadratic differentials: getting explicit values, Ann. Inst. Fourier (Grenoble) 66 (2016), 2203-2251, arXiv:1501.01611.
  46. Goujard E., Möller M., Pillowcase covers: counting Feynman-like graphs associated with quadratic differentials, Algebr. Geom. Topol. 20 (2020), 2451-2510, arXiv:1809.05016.
  47. Gregori P., Schiappa R., From minimal strings towards Jackiw-Teitelboim gravity: On their resurgence, resonance, and black holes, arXiv:2108.11409.
  48. Gross D.J., Newman M.J., Unitary and Hermitian matrices in an external field, Phys. Lett. B 266 (1991), 291-297.
  49. Gross D.J., Newman M.J., Unitary and Hermitian matrices in an external field. II. The Kontsevich model and continuum Virasoro constraints, Nuclear Phys. B 380 (1992), 168-180, arXiv:hep-th/9112069.
  50. Gross D.J., Witten E., Possible third order phase transition in the large-$N$ lattice gauge theory, Phys. Rev. D 21 (1980), 446-453.
  51. Huang Y., Penner R.C., Zeitlin A.M., Super McShane identity, J. Differential Geom. 125 (2023), 509-551, arXiv:1907.09978.
  52. Ip I.C.H., Penner R.C., Zeitlin A.M., $\mathcal{N}=2$ super-Teichmüller theory, Adv. Math. 336 (2018), 409-454, arXiv:1605.08094.
  53. Ip I.C.H., Penner R.C., Zeitlin A.M., On Ramond decorations, Comm. Math. Phys. 371 (2019), 145-157, arXiv:1709.06207.
  54. Jafferis D.L., Kolchmeyer D.K., Mukhametzhanov B., Sonner J., Jackiw-Teitelboim gravity with matter, generalized eigenstate thermalization hypothesis, and random matrices, Phys. Rev. D 108 (2023), 066015, 90 pages, arXiv:2209.02131.
  55. Johnson C.V., Nonperturbative Jackiw-Teitelboim gravity, Phys. Rev. D 101 (2020), 106023, 12 pages, arXiv:1912.03637.
  56. Johnson C.V., Explorations of nonperturbative Jackiw-Teitelboim gravity and supergravity, Phys. Rev. D 103 (2021), 046013, 22 pages, arXiv:2006.10959.
  57. Johnson C.V., Jackiw-Teitelboim supergravity, minimal strings, and matrix models, Phys. Rev. D 103 (2021), 046012, 15 pages, arXiv:2005.01893.
  58. Klebanov I.R., Maldacena J., Seiberg N., Unitary and complex matrix models as 1-d type 0 strings, Comm. Math. Phys. 252 (2004), 275-323, arXiv:hep-th/0309168.
  59. Kontsevich M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1-23.
  60. Kontsevich M., Soibelman Y., Airy structures and symplectic geometry of topological recursion, in Topological Recursion and its Influence in Analysis, Geometry, and Topology, Proc. Sympos. Pure Math., Vol. 100, American Mathematical Society, Providence, RI, 2018, 433-489, arXiv:1701.09137.
  61. LeBrun C., Rothstein M., Moduli of super Riemann surfaces, Comm. Math. Phys. 117 (1988), 159-176.
  62. Manin Yu.I., Zograf P., Invertible cohomological field theories and Weil-Petersson volumes, Ann. Inst. Fourier (Grenoble) 50 (2000), 519-535, arXiv:math/9902051.
  63. Martinec E.J., The annular report on noncritical string theory, arXiv:hep-th/0305148.
  64. Masur H., Interval exchange transformations and measured foliations, Ann. of Math. 115 (1982), 169-200.
  65. McShane G., A remarkable identity for lengths of curves, Ph.D. Thesis, University of Warwick, 1991.
  66. McShane G., Simple geodesics and a series constant over Teichmuller space, Invent. Math. 132 (1998), 607-632.
  67. Mertens T.G., Turiaci G.J., Liouville quantum gravity—holography, JT and matrices, J. High Energy Phys. 2021 (2021), no. 1, 073, 69 pages, arXiv:2006.07072.
  68. Mironov A., Morozov A., Semenoff G.W., Unitary matrix integrals in the framework of the generalized Kontsevich model, Internat. J. Modern Phys. A 11 (1996), 5031-5080, arXiv:hep-th/9404005.
  69. Mirzakhani M., Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math. 167 (2007), 179-222.
  70. Mirzakhani M., Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. Soc. 20 (2007), 1-23.
  71. Mirzakhani M., Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann. of Math. 168 (2008), 97-125.
  72. Monin L., Telpukhovskiy V., On normalizations of Thurston measure on the space of measured laminations, Topology Appl. 267 (2019), 106878, 12 pages, arXiv:1902.04533.
  73. Moore G., Seiberg N., From loops to fields in $2$D quantum gravity, Internat. J. Modern Phys. A 7 (1992), 2601-2634.
  74. Moore G., Seiberg N., Staudacher M., From loops to states in two-dimensional quantum gravity, Nuclear Phys. B 362 (1991), 665-709.
  75. Morozov A., Shakirov S., Generation of matrix models by $\hat W$-operators, J. High Energy Phys. 2009 (2009), no. 4, 064, 33 pages, arXiv:0902.2627.
  76. Morris T.R., 2-D quantum gravity, multicritical matter and complex matrices, FERMILAB-PUB-90-136-T.
  77. Mulase M., Penkava M., Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\overline{{\mathcal Q}}$, Asian J. Math. 2 (1998), 875-919, arXiv:math-ph/9811024.
  78. Mulase M., Safnuk B., Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy, Indian J. Math. 50 (2008), 189-218, arXiv:math/0601194.
  79. Norbury P., Enumerative geometry via the moduli space of super Riemann surfaces, arXiv:2005.04378.
  80. Norbury P., A new cohomology class on the moduli space of curves, Geom. Topol. 27 (2023), 2695-2761, arXiv:1712.03662.
  81. Okuyama K., Sakai K., JT gravity, KdV equations and macroscopic loop operators, J. High Energy Phys. 2020 (2020), no. 1, 156, 44 pages, arXiv:1911.01659.
  82. Okuyama K., Sakai K., JT supergravity and Brezin-Gross-Witten tau-function, J. High Energy Phys. 2020 (2020), no. 10, 160, 36 pages, arXiv:2007.09606.
  83. Okuyama K., Sakai K., Multi-boundary correlators in JT gravity, J. High Energy Phys. 2020 (2020), no. 8, 126, 38 pages, arXiv:2004.07555.
  84. Ooms A., Cooking up quantum curves from Airy structures, Master Thesis, University of Alberta, 2019.
  85. Penner R.C., Zeitlin A.M., Decorated super-Teichmüller space, J. Differential Geom. 111 (2019), 527-566, arXiv:1509.06302.
  86. Post B., van der Heijden J., Verlinde E., A universe field theory for JT gravity, J. High Energy Phys. 2022 (2022), no. 5, 118, 63 pages, arXiv:2201.08859.
  87. Rosly A.A., Schwarz A.S., Voronov A.A., Geometry of superconformal manifolds, Comm. Math. Phys. 119 (1988), 129-152.
  88. Saad P., Shenker S.H., Stanford D., JT gravity as a matrix integral, arXiv:1903.11115.
  89. Seiberg N., Shih D., Branes, rings and matrix models in minimal (super)string theory, J. High Energy Phys. 2004 (2004), no. 2, 021, 60 pages, arXiv:hep-th/0312170.
  90. Stanford D., Witten E., Fermionic localization of the Schwarzian theory, J. High Energy Phys. 2017 (2017), no. 10, 008, 27 pages, arXiv:1703.04612.
  91. Stanford D., Witten E., JT gravity and the ensembles of random matrix theory, Adv. Theor. Math. Phys. 24 (2020), 1475-1680, arXiv:1907.03363.
  92. Teschner J., Remarks on Liouville theory with boundary, Proc. Sci. 6 (2000), 041, 8 pages, arXiv:hep-th/0009138.
  93. Veech W.A., Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. 115 (1982), 201-242.
  94. Veech W.A., Moduli spaces of quadratic differentials, J. Anal. Math. 55 (1990), 117-171.
  95. Witten E., Two-dimensional gravity and intersection theory on moduli space, in Surveys in Differential Geometry, Lehigh University, Bethlehem, PA, 1991, 243-310.
  96. Witten E., Ground ring of two-dimensional string theory, Nuclear Phys. B 373 (1992), 187-213, arXiv:hep-th/9108004.
  97. Witten E., Notes on super Riemann surfaces and their moduli, Pure Appl. Math. Q. 15 (2019), 57-211, arXiv:1209.2459.
  98. Wolpert S., On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math. 107 (1985), 969-997.
  99. Wright A., A tour through Mirzakhani's work on moduli spaces of Riemann surfaces, Bull. Amer. Math. Soc. (N.S.) 57 (2020), 359-408, arXiv:1905.01753.
  100. Yang D., Zhang Q., On the Hodge-BGW correspondence, arXiv:2112.12736.
  101. Yang D., Zhang Q., On a new proof of the Okuyama-Sakai conjecture, Rev. Math. Phys. 35 (2023), 2350025, 14 pages, arXiv:2303.09243.

Previous article  Next article  Contents of Volume 20 (2024)