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Abstract. Using the vertex operator representations for symplectic and orthogonal Schur
functions, we define two families of symmetric functions and show that they are the skew
symplectic and skew orthogonal Schur polynomials defined implicitly by Koike and Terada
and satisfy the general branching rules. Furthermore, we derive the Jacobi—Trudi identities
and Gelfand—Tsetlin patterns for these symmetric functions. Additionally, the vertex op-
erator method yields their Cauchy-type identities. This demonstrates that vertex operator
representations serve not only as a tool for studying symmetric functions but also offers
unified realizations for skew Schur functions of types A, C, and D.
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1 Introduction

For a partition A = (A1, A2, ..., \n), Schur functions, symplectic Schur functions, and orthogonal
Schur functions in finitely many variables are respectively defined by [19, 20, 24, 25]

det (l’;\] tn=g )

1<ij<n
sx(z) = — , (1.1)
det (:J:;I j)lgz‘,jgn
Xj+(n—j+1) —Aj—(n—j+1)\n
o) = 2 i (12)
A - N — — 9 .
det (le*3+1 > (n J+1))?j:1
—Xj+j—n Aj—j+n\n
£\ _o( 1 n(n—1) det (xz ’ + 00, #0020 ; )i,j:l 1
ox(zF) =2(-1)" 2 s R h , (1.3)
det ({L‘Z + x; )Z.J,Zl

where 6,4, equals 1 if @ # b and is 0 otherwise. They appear in various contexts of math-
ematics, especially in the representation theory of classical Lie groups (general linear groups,
symplectic groups and even orthogonal groups) as characters of finite-dimensional irreducible
representations [14, 18, 25, 26]. They are also studied in generalized vertex algebras and g¢-
characters [5, 17].

With the advent of Schur symplectic and Schur orthogonal symmetric functions, arises the
inquiry into skew versions for these symmetric functions. Since the family of symplectic Schur
or orthogonal Schur functions indexed by partitions does not constitute a complete basis in
the ring of symmetric functions (in fact they belong to the ring of Laurent polynomials), the
traditional approach of employing the adjoint operation is not viable for defining skew orthog-
onal or symplectic Schur functions. Instead the skew symplectic and (even) skew orthogonal
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symmetric functions were implicitly defined by Koike and Terada [15] by restricting the irre-
ducible characters of the classical groups into their subgroups and were expressed by tableaux
representations. In [2], the tableaux representations were transformed into the Gelfand—Tsetlin
pattern representations by Ayyer and Fischer. It is natural to ask whether the skew symplectic
Schur and orthogonal Schur functions can be computed by Jacobi—-Trudi type formulas, which
would then lead to a parallel formulism as the Schur functions and skew Schur functions and
also provide a lifting method to define the skew Schur symplectic and orthogonal functions in
infinitely many variables.

The aim of this paper is to address these questions by the vertex operator realization of the
classical symmetric functions [9] and the symplectic Schur and orthogonal Schur functions [3, 12].
The vertex algebraic method of studying Schur polynomials can be traced back to the Kyoto
school’s work on integrable systems [6] where the tau functions of the KP hierarchy are in terms
of Schur polynomials. Skew Schur functions s/, satisfy the celebrated decomposition formula,
i.e., the general branching rule

sa(z1,...,zn) = Z Su(T1, s T k)Sx/u (Tt - - Tn),s
HCA

which can be interpreted as the restriction of the irreducible representation of GL(n,C) to
GL(n — k,C) x GL(k,C). We will define skew (symplectic/orthogonal) Schur functions using
vertex operators and derive their combinatorial properties such as the Jacobi—Trudi identities,
Cauchy-type identities and verify they satisfy the Gelfand—Tsetlin pattern representations found
by [2]. We also show that our vertex operator representations for skew-type symmetric functions
comply with the general branching rules in the agreement with Koike and Terada’s approach.

The construction of skew Schur functions and their generalizations can be formulated in terms
of the representation theory of infinite-dimensional Lie algebras. One starts with the infinite-
dimensional Heisenberg algebra [8] with the center 1 and defines the Fock space M* and its
completion M* generated by the vacuum (0| (which is the vacuum vector in the right module)
and the Heisenberg generators with positive modes. There are three families of special elements
((A], (A®P| and (\°| in the right module) defined by partitions A, corresponding respectively to the
Schur, symplectic Schur, and orthogonal Schur cases. We will prove that they are orthonormal
by computing the inner product with the elements (|A), |A\*P) and |A°) in the left module) in
the Fock space M respectively (see Theorem 2.3), which is key to construct (skew) symmetric
functions and also savages the problem of adjoint operation with skew versions. For the half
vertex operators I'y ({z}) and T'y ({z*}), we will show that

(OIT+({2}) = > (Asa(a),

A
O ({2*}) = D (WPlspa(e*) = Y (\loa(a™),
A A
where each summation is over (generalized) partitions A = (A1,..., An) with zeros parts allowed

in the end. The benefit of this approach is that we can easily obtain the well-known classical
Cauchy identities for (symplectic/orthogonal) Schur functions [14, 25]. This approach is logically
independent of the Jacobi—Trudi formula.

It is well known that (u|l'y ({x})|\) = sy/,(x) [16, 21] using the half vertex operator I'y ({x}).
We extend the vertex operator method to derive two families of symmetric functions

/() = (PP ({2 1) IAP),
on/u(@%) = (04 ({2 })12%),
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which can be interpreted as the skew symplectic/orthogonal Schur functions from the general
branching rule. We also show that each skew function can be written as a Jacobi—Trudi type
determinant of complete homogeneous symmetric functions with variables x1, :1:1_1, ..., TN, a;]_vl.

Exploiting the combinatorial properties of (u*P| and (u°|, we also obtain Gelfand—T'setlin pat-
tern representations (generating functions of some Young tableaux in an equivalent form [24])
for skew symplectic/orthogonal Schur functions, which provide alternative definitions of sym-
plectic/orthogonal Schur functions (see [2]). The vertex operator method depending on the
combinatorial properties of some orthogonal elements of the Fock space M may shed light on
specific descriptions of generalized shape 7 symmetric functions [7].

This paper is organized as follows. In Section 2, we recall the vertex operators related to
fermionic Fock spaces M and M* and prove the orthonormality for three distinguished sets
of M and the completion of M*. In Section 3, we define the skew symplectic/orthogonal Schur
functions by the vertex algebraic method and derive their Jacobi—Trudi identities. We also
show the vertex operator realizations for these skew symmetric functions are consistent with
the general branching rule, therefore they agree with the skew symplectic and orthogonal Schur
polynomials introduced by Koike and Terada. In Section 4, we give formulas of skew sym-
plectic/orthogonal Schur functions in terms of Gelfand—Tsetlin pattern representations, which
agree with Ayyer and Fischer’s results. In Section 5, we provide a vertex operator approach
to the Cauchy identities for the (symplectic/orthogonal) Schur functions, which is logically in-
dependent of the Jacobi—Trudi formulas [13]. We also obtain Cauchy-type identities for skew
(symplectic/orthogonal) Schur functions.

2 Preliminaries

Let H be the Heisenberg algebra generated by {a, | n # 0} with the central element ¢ = 1
subject to the commutation relations [8]

[@m, an] = M, —nc, [an,c] = 0. (2.1)

The Fock space M (resp. M*) is generated by the vacuum vector |0) (resp. dual vacuum
vector (0|) and subject to

an|0) = (0a_n, n > 0.

In other words, M and M* are respectively left and right modules for H. It is easy to see
that H acts on M (resp. M*) irreducibly. Moreover, M (resp. M™*) is isomorphic to the
symmetric algebra Cla_1,a_2,...] (resp. Cla1,aq,...]). Note that M* is a graded space with
the gradation induced from that of H. Let {M;;} be the filtration of the subspaces M spanned
by homogeneous elements with degree > n. Then we let M* be the associated completion of
the Fock space M*.

Consider the following vertex operators given in [3, 12] (see also [23])

X(z) =exp <Z aﬂ"z") exp ( Z (le_"> = Z Xnz™",

n=1 n=1 nez
> a > a
X*(z) = exp <— Z n”z") exp (Z ;z_”) = Z X;2",
n=1 n=1 nez

Y (z) = exp (Z a;lnz”) exp (— Z %(z_" + z")) = Z Y27,

n=1 n=1 nez
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n=1 n=1 nezZ
_ 2 = a;n n o - al —n n _ —n
W(z) = (1 z)exp(Z - z)exp( Zn(z —|—z)>—Zan )
n=1 n=1 nez
a_ “a
W*(z) = =y ST =) Wi 2.2
R O e -

Lemma 2.1. The actions of the operators X,, X}, Yy, Y5, Wy, and W} on the (dual) vacuum
are given by

X,|0) = X*,,10) = (0| X_,, = (0| X,
= Y,[0) = YZ[0) = Wl0) = WZ,|0Y =0  forn >0, (2.3)
OV = —(0Y g (O = Oy (O[W = —(OIW s, (O] = (O, (2.4)
Proof. Relations (2.3) are obvious, and we only need to prove (2.4). Note the fact

(0] exp (Z “;”(z*" + z”)) = <0\1_—1Z2 exp (Z “;L"z") Y*(2) = ¢ _122 (O[Y*(2),

(0] exp (Z %(z_" + z”)) = (0| T OXP (Z a;lz_"> V(27
n=1 n=1
—22
= =20z,
therefore
(0]Y*(2) = =2*(0]Y* (27 1). (2.5)

Taking the coefficient of 2" of (2.5), we have
0y = =(0]YZ, 1.
Similarly, we can get the other commutation relations in (2.4). [

The following result can be found in [12, Theorem 3.4, Proposition 3.6].

Lemma 2.2. The components of the vertex operators (2.2) satisfy the following commutation
relations

XiX;+Xj11X,1 =0, X:X]* + X;—l ;-‘rl =0, XzXJ* + X;_;’_IXZ'JFl = 51'73‘,
YiYi+Yj41Yi1 =0, Y'Y+ YV, =0, VY] + Y5 Yy = 0, (2.6)
WiW; +W; 1 W1 =0, W;W; + I/Vjtl ;iH =0, VVZ‘W; + W;‘HWZ»H = (Sm‘.
A partition X = (A1, Ae,..., ;) is a weakly decreasing sequence of positive integers, and
a generalized partition A = (A1, A2, ..., A,) is a weakly decreasing finite sequence of nonnegative
integers. The \;’s are called the parts of A\, and the number [(\) of nonzero parts is the length
of . If \, u are partitions, we will write u C A\ to mean that \; > u; for all ¢ > 1. Therefore,

a generalized partition is a partition appended with a string of finitely many zeros.! For a given
(generalized) partition A = (A1, Ag, ..., N\;), let

N = X Xoa X0 l0), (A= (01X, - X7y (2.7)

In the paper, generalized partitions should be used always for the skew symplectic and orthogonal Schur
functions. We remark that the skew Schur functions indexed by generalized partitions coincide with those indexed
by ordinary partitions.
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[AP) =Y, Yon, - You [0), (AP[ = (OYZ,, -~ Y2y, (2.8)
|)‘O> = W—/\1 W—)\2 e W—)\l |0>7 <)‘O’ = <0|Wj/\l e Wj)q'
We remark that the vectors [A), [A*P) and [A°) are in M, (A] in M*, while the vectors (A®P|
and (\°| belong to the completion M*. Due to the fact
(Oyg # (0, (0[Wy # (0],

the vector (AP| (resp. (\°|) differs from the vector (uP| (resp. (u°|) even if A and p only differ
by a string of zeros at the end. For examples,

O[YG Y2, Yy £ 0V Y2, £ OYg Y Yo, Y™y
(WYX, W=, # (O|WX, WX, # (0O|WyWyW= WZ,.

For any (u| in M and |v) in M*, one define (u|v) by
(ulv) = (ul[v),

where it is assumed that (0[1/0) = 1. Now we have the following orthonormality result for three
distinguished sets of M*.

Theorem 2.3. For (generalized) partitions pu = (u1, 2, ..., ) and X = (A1, A2y ..., A;), one
has that

(HIA) = O, (2.10)
(WPINP) = Oy, (2.11)
(LX) = dxus (2.12)

where the partitions in (2.10) are usual ones and the partitions in (2.11) and (2.12) are gener-
alized partitions.

Proof. Using the commutation relations (2.6), we have

<[L|)\> = <0|Xim XX )('_)\1)('_)\2 < -X_)\l|0>

—p2t—pm

= <O|Xim o 'Xiuz (6/!11)\1 - X—M—lXim—l)X—)Q T X—Az ’0>
The second summand is zero if u; > Ap, since the term Xiqu—Ag .-+ X_,, can be rewritten
as (1)1 X_y, - - X_xn-1XT, by (2.6), and thus it kills |0) according to (2.3). If A&y > p1,
we move X_,_1 to the left to kill (0. Either way shows that the inner product is simplified to

</’L‘/\> - 5)\1,M1 <0‘Xim T XiMQXf)\Q T X*)\L‘O>'

Subsequently (u|A) = 0.
In the case of (u*P|\%P), for py > A; we also have that

(PIATP) = 0y 2y (O[YZ, - VI Yy, - Yy [0),

Now consider the subcase when p; < Aj. It follows from (2.3) that
(*PIA™P)
_{0, p+i—1#)\foralll<i<l,

(—1)i71<0’Y_*M "'Y—*MY—)\l—l"'Y—)\i,l—lY—)\ ---Y_)\l|0>, prt+i—1=\.

i+1

Continuing the process, (u*P|A\*P) equals to 0 or (=1)(0[YZ*, Y, 141[0), while
<0‘Y_*ulY,/\1,l+1‘0> = —<O’Y,/\171Yj,ul_1’0> - 0

since —p;—1 < 0 and by (2.3). We therefore obtain (2.11) by combining the relations between p;

and A;. The relation (2.12) can be proved similarly. [
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Remark 2.4. The equation (2.11) makes sense only when we fix a positive integer [ and the
length of generalized partition g = (p1, ..., fim,0,...,0) is not bigger than [, then
——

l—m
<MSp| = <0| YO* . ..YO* Y—*um .. 'Y—*m‘

l—m

For example, it is easy to check that

O Yy Y5, Y5, Y,V 1Y 1Y 4]0) =0, O]YX, Y2, Y_4,Y_1Y_1Y_4|0) = —1,
thus for p = (4,1,0,0)

(WP = (0]Yg Yo Y, Y2,

The same remark applies to the orthogonal case (2.12).

3 Skew symplectic/orthogonal Schur functions
and Jacobi—Trudi identities

This section first recalls the vertex operator construction of skew Schur functions sy, (z). Then
we extend the method to realize skew symplectic Schur functions spy Ju (mi) and skew orthogonal

Schur functions oy, (xi) Their Jacobi—Trudi formulas are also provided.

The Jacobi-Trudi identities for the Schur function sy(z), the symplectic Schur function
SP (a:i), and the orthogonal Schur function oy (azi) can be treated in the same manner by
the vertex operator. Recall the classical Jacobi-Trudi identity for the Schur functions [19, for-
mula (3.4)]

sy(z) = det(hy,—itj(®))1<i <N, (3.1)

where the complete homogeneous function h,(z) is defined by Hf\il =" 7 hn(2)2". For

the symplectic and the orthogonal cases, Schur function spy (mi) and orthogonal Schur function
ox(z*) admit the Jacobi-Trudi formulas [14, Theorems 1.3.2 and 1.3.3] and [12, formulas (4.1)
and (4.2)]

1
SPy (xi) D) det (hl/riJrj (xi) + hyi—imjr2 (xi))gi,jgzv’ (3.2)
Oy (mi) = det (hw—iﬂ' (xi) — hy—i—j (xi))lgi,jgN’ (3.3)

where hy, (z%) [3, 12, 26] is defined by Hi\il m = > ez hn (2F) 2™, Tt is obvious that

hn () = hy (2F) =0 for n < 0.
Introduce the (half) vertex operators

= an a_p
T = ton r_ = — 2" . 4
+(2) eXP(; - ), (2) eXP(; —z > (3.4)
For {z} = (z1,...,2N), {xi} = (;Ul,a:l_l,...,xN,:U]_Vl), we denote

N N
Iy({z}) = HF+(~%‘)7 Ty ({a*}) = [[Te @)l (27"),  T-({zp) =] ().

i=1 i=1
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3.1 Skew Schur functions

For a partition p = (p1,..., ), one can rewrite X*,, X%, by permuting the factors [10]
and (2.6):
e(0) im o Xim = Xiuo(l)+o'(l)_l o Xiua(i)"'a(i)_i . .Xiﬂa(1)+g(1)_l, (3.5)

where o € ;. The skew Schur function s, /,(7) generalizes the Schur function and has a deter-
minantal expression [19, formula (5.4)] for two partitions p = (u1,..., ) and A = (A1,..., \g):

Sy/pu(@) = det(x, —p;—itj)1<i j<k-
Proposition 3.1. Let p = (p1,...,141) and A= (A1,..., \g) be two partitions. Then

(LT ({2})[A) = sx/u(). (3.6)
Proof. Using the relations

Iy(z)=T_ (zil)X* (271),

) = (1 2) )

<1
(0T (2) = (0],
we get that
z\ 7 1 1
oraen = T (1-2) o)X
1<i<j<N ¢
-1
T, * *
1<i<j<N ¢ N1, ,nNEZ
For v = (v1,...,vn), the relation (3.5) says that the coefficient of (v| = (0[X*, ---X*,  in

O+ ({z}) is

-1
X Vo(1y—o(1)+1 Vy(iy—0o (1)+1 v, —o(N)+N
J (1) o (i) o(N)
Il ( —> g e(o)z, o RN

1<i<j<N €SN

— N ~N—o(1)+N —o(N)+N
_ H (xi_xj)—l Z g(U)xll/o(l) a(1)+ RO a(i)+ .__xl]’\}y(zv) a(N)+

(2

1<i<y<N oeSn
vi+N—j vi+N—j
B det (xij )1§i,jSN B det (%’J )1§i7j§N — s (2)
= = — =5,
H1§i<j§N($i — ;) det (va ])197]5]\[ ’

where s, (z) is the Schur function (1.1) associated with the partition v. We therefore get the
expansion

OIF+({zh) = Y (wsu(a), (3.7)

()N

where the sum is over all partitions v with length < N. It then follows from (3.5) and the
Jacobi-Trudi formula (3.1) that

O (fzh) = > (01XZ, X2 by (2) -y ()

n1,n2,...,nN >0
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By (2.2), we have that

IZI2
r—’ﬂ
8
H,_/

X* ()04 ({z}) = = hi(2)2 T ({2})X*(2),

2:1 i>0
ie.,

Xjnl_‘-‘r({x}) L'y {33} Zh fn i

>0

It follows from (2.7) that

(ull({z}) = (O[XZ,, - X7, T ({z})
‘F-f- {x} Z Xf,ul i :ul zlhzz(w)'”hh(x)

’Ll, ,’Ll>0

= Z <0‘X711+N ’ Xizprl hll+N (.I) U hil+1($)

U1yeensbi4 NEL
Z X—;,Ll ’Ll i;,u Zlh’ll (x) T h’il (x)
01,...,01 220

= Y (oxT XY, X X

—i4N —p1 =i —H1—%1

i1 :il+N€Z

X higy o (@) - - gy (@) hiy (2) - - By (). (3.8)
For partition A with [ < I(\) < 1+ N, the relations (3.5) and (3.8) imply that the coefficient
of (A| in ([T ({}) is

I+N
Z e(o) H hA(,(j)—uj—o(j)Jrj(x) = det (h/\i—Hj_i+j($))1§i,j§l+N = sx/u(@),
=1

GESZ+N
ie.,
Wre{zh) = > Asaul@).
<IN <I+N

Subsequently (by the orthogonality (2.10))

(LT ({2 })[A) = sy/u(@).
This completes the proof. |

Remark 3.2. Okounkov [21] derived (3.6) by computing I'; ({z})|\). We can show (3.6) using
the vertex operator approach (see Appendix A). Though we do not know how to generalize
either method to skew-type orthogonal/symplectic cases, the method of Proposition 3.1 can be
generalized to both cases.

3.2 Skew symplectic Schur functions

It follows from (2.4) and (2.6) that
(O o Yo+ Yo = (1) O Yoy Yo Vo oYV
= (_1)Z<0|Y* +i+1Y*n1+1 Y*m 1+1Y* Y2

—Ni+1 Y
(O, Y Y Y

—n;—1" n;+2i *m+1' —nN"°
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In other words, if we replace the ith factor Y, of (0[YZ, ---YZ* .--Y* = by —Vr* o, it
remains the same. We use the notation (/) to mean either of a or b. Then for a generalized
partition n= (Ml? LR Ml))

o (2 Yo (L Yo Y=g
_Yuz+2 _Y:i+2(l+1*i) _Yu1+2l

Note that there is a similar action of Sy on the vectors (0[Y*,, ---Y* ... Y* asin (3.5) using
the commutation relation Y;*Y;" = —Y* ;Y% (2.6). Therefore, we have that

coyol[ et Y [ Vo= \ [ o=t Y ey (59)
Y -y » -Y* s\
Bo 1y —o (1) +1+2 Bo(iy—o(8)+2(1+1)—1 Ho(1y—o(1)+20+1
We now define a family of symmetric functions by vertex operators.

Proposition 3.3. Let u = (p1,...,1) and X = (A1,..., \an) be two generalized partitions,

and {mi} = {wl,xl_l .. .,xN,a:]_Vl}. Then one has that
(P ({27 }) INP) = det(aij)i<ij<irn, (3.10)
where
Y v ;
Pn—iti (#F) 4+ ha—icjpaipe(2F), 14+2<j<I+N.

We call the symmetric function (3.10) as the skew symplectic Schur function SPA/u (:ni) , i.e.,

sp/\/u(xi) = det(aij)1<ij<i+N = (/fp|1“+({a:i})|/\8p>. (3.12)

We will justify this by showing these symmetric functions obey the branching rule, therefore
they agree with the skew symplectic Schur functions defined by Koike and Terada [15].

Proof. By definition of the vertex operator Y*(z), one has that

ori(@# =TI 1= I m O ey

T
1<i<j<N Y 1<i<i<N zj

N _i-1-N
_ [Tisy 2
—(N—j+1) _ _ N—j+I\N
det (x; - )iJ‘:l

O)Y*(zn) - Y™ (x1),

where we have used the Vandermonde type identity [12, formula (4.6)] and [26, p. 229]:

i1 2N—j+1\N
det (" — a7/ )Z.J,:1 = H (x; — ;) H (1 — zizj).
1<i<j<N 1<i<j<N

In view of (3.9) for partition v = (v1,...,vy), the coefficient of (v°P| in (0|Y*(zy) - Y (1) is
N

Z E(O’) H (xi—u(,(i)-i-a(i)—i _ $;/U(i>_a(i)+2N+2_i) — det (Jii_yj+j_i _ $§j_j+2N+2_i)fj:1.

€SN =1

Then we have
i1 —vj+j—i —j+2N+2—i\ N
||£\;1x21Ndet(m-V”JZ—xlﬁj Z)

n B s i 7 4,j=1
Ory ({=z*}) = (Z )(V il det (a; NI+ N=iH )N ’
v=(v1,...,UN

7 7

1,j=1
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det( V= (N—j+1) xl{j+(N7j+1))N

- Y ik P
—(N=j+1) _  N—j+l
v=(v1,....,VN) det( T - ) i,5=1

det (o F(N—j+1) x—Vj—(N—J—I—l))N
-y "
det( N—j+1 x—(N—j+1))N

v=(v1,...,VN) i ij=1

= Z (V°Plsp,, (xi), (3.13)

v=(V1,.VN)

where the sum is over all generalized partitions v = (v1, ..., vy) and we have used the bialternant
formula of the symplectic Schur function sp,, (z%) (see (1.2)) associated to the partition v. In-
voking (3.9) again and also by the Jacobi-Trudi formula for the symplectic Schur functions (3.2),
we obtain another expression for (0|4 ({z*}):

oIry ({*}) (3.14)
N
_ Z Ofy*,. - Y* h H ) + hy—2ig2(z5)).
n1>—N+1n2>—N+2,....nny>0 =2
By definition of vertex operator Y*(z), we have

N 1

VeI () = T gy DY)
= Z h; (xi)zif+({xi})Y*(z),

>0

which implies

anr"'({xi}) F+ {xi} Zh Yo

>0

It then follows from (2.8), (3.14) and (3.9) that

WP ({a)) = 3 hia () b () O ({1 Y2,y Y2

01,0421 220
+1
= Z (0 ’Y*ZL+N lez“YjM i *m i1 thk
01404521220
i1p1>—N+1, i v >0
I+N
< T (ha(#%) + a2 (2))
k=142
+1
+
= Z (AP Z HhA(;(k)—Mk—U(k)-l-k(x)
)\:()\1,...,)\1+N) O'GS[+N k=1
I+N
+ +
X H (hAa(k)—U(k)'*'k(‘T >+h)‘a(k)_o(k)_k+2l+2(x ))
k=142
= Z (NPl det(aij)i<ij<itn, (3.15)
A=(A1,0 A4 N)

where a;; are defined in (3.11) and in the last two equations A\,; — o(i) + 2(l + N +1) —i is
greater than [ + N —i. |
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Using the orthogonality relation (2.11), for generalized partition v = (v1,...,1,), we have
WL Y P = ), S IPYwPIT) = ), (3.16)
77:(7717"'777”) U=(7717~--,77n)
where the sum is over all generalized partitions n = (n1,...,7,).
Proposition 3.4. For z* = (azl,xfl, . ,azn_k,x;ik) and y* = (yl,yfl, e ,yk,ykfl), the
functions sp) ,,, satisfy the general branching rule
+., + + +
soa(eS0%) = D spu(aT)spau(v). (3.17)

p=(1,e e —k)

Proof. It follows from (3.10) that

(O (27547) |AP) = spy (¢ 7). (3.18)

By (3.16),

O3 (a5 y5) VP) = O (eF) S0 @) I0s (yF) )

w=(11 53— k)

= D spue)soas(v). (3.19)

}L:(/.L1,...,,Ltn7k)
Combining (3.18) and (3.19), we obtain the result. [

Remark 3.5. Since sp,/, satisfies the general branching rule (3.17) and reduces to the sym-
plectic Schur function when p = @, it is rightfully called the skew symplectic Schur function.
For k = 1, the general branching rule (3.17) reduces to the branching rule for Koike-Terada’s
symplectic Schur functions [15, Theorem 3.1]. In fact, spy /u agrees with that defined by Koike
and Terada by using the forthcoming Gelfand-Tsetlin patterns (4.2).

Remark 3.6. We stress that the partitions p of the skew symplectic Schur function sp)/, in
(3.10) and (3.12) are general partitions, i.e., some parts can be zeros. For instance, the symmetric
function (0]Y* Ty ({2F})Y_oY_1Y_4]0) is the skew symplectic Schur function sp(y )/(1)(xi),
and (0|Y5Y* Ty ({zt})Y_oY_1Y_1|0) gives different expression SP(2,1,1,0)/(1,0) (z%). The same
statement applies to the skew orthogonal case (3.23).

Remark 3.7. For two generalized partitions u = (u1,...,4;) and A = ()\1,...,/\l+1,0N_1),
the formula (3.12) implies that spy, (:L‘:t) = S\/u (mi) since the matrix (a;;) is a block upper-
unipotent one. In particular, if ] = N or [ = N — 1, the skew symplectic Schur function
Sp(Al7...7/\N’0l)/(0l)(IL‘:t) is equal to the Schur function S()\lw_)\N)(J/‘:t) for

{xi} (:L'l,.%'l ,...,J;N,x;,l).
One can also get the special cases of skew symplectic Schur functions via Gelfand—Tsetlin pat-
terns in the following.

3.3 Skew orthogonal Schur functions

We can treat the orthogonal Schur functions similarly. Using the commutation relations

OIWy = OWZ,,  WiWj = -Wi Wi,
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we see that the partition elements (2.9) with partitions u = (u1,. .., 1) can be expressed as

0 Wi#o(l)+g(l)_l . V[/j:u‘a(l)"“T((L)_Z . Wj#0(1)+0(1)_1 _ o} 3 20
Y oy —o()+1 P gy —o (i) +20—1 I poy—o(1)+21-1
where d; denotes 6,200, (i)-41-

Recall the Vandermonde type identity [12, formula (4.4)] and [26, p. 221] in this case

» N
det (z} 7 4+ a1 2)mzl =2 J] (@i—2)Q—zizy).

1<i<j<N
Therefore,
(O ({=*})
. —viti—i —j+2N—i\ N
o N(N-1) Hf\ilxi N det (xz SARE +5j#N5VN¢0xiVJ " Z)z‘,j:1
- T el T
v=(V1,....UN) et (xl + L )i7j:1
—Uiti—N —j+N\N
N(J\;—l) det (xz N +5j7ﬁN5VN750sz‘/J a )i,j:l

= > @R

SRS =
V:(V17'~'7VN) det ("BZ + [L'Z )

— Z (v°|oy (xi), (3.21)

v=(V1,0VN)

N
ij=1

where the sum is over all partitions v = (v1,...,vyN) and o, (:Ei) is the orthogonal Schur function
associated to partition v (see (1.3)). It follows from (3.20) and the Jacobi—Trudi formula (3.3)
that

Oy ({=*})

= > O, W T (B, (2) = hny—ai (%)), (3.22)

n1>—N+4+1n2>—N+2,...,nn>0 =1

The following proposition can be proved by the same method of Proposition 3.3, (3.20),
and (3.22).

Proposition 3.8. For generalized partitions p = (p1,...,0) and X = (A1,..., \yn), and
{xi} = {xl,ﬂffla e ,$N,93;;1}, one has that

(o0 ({2 })IA°) = det (b)Y, (3.23)
where
bij = {h%—w—iﬂ (%), 1<j<l,
Pog—iti (%) = ha—icjra(a®), 1+1<j<I+N.

We also call the symmetric function in (3.23) the skew Schur orthogonal function oy/,(z). In
the following, we will justify the definition.

Using the orthogonality relation (2.12), for generalized partition v = (v1, ..., 1, ), one has
A I D N IR A > ) = 1), (3.24)
n=("1,-,7n) n=("1,-,7n)
where the sum is over all generalized partitions n = (11,...,7,). Similar to the proof of Propo-

sition 3.4, we have the following statement.
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Proposition 3.9. For z* = (xl,xfl,...,xn_k,x;ik) and y* = (yl,yfl,...,yk,ygl), the
functions oy, satisfy the general branching rule
o) (mi;yi) = Z Ou(l‘i)O)\/u(yi). (3.25)

=115 b — 1)

Remark 3.10. Based on the general branching rule for orthogonal Schur function (3.25), the
function oy, (3.23) is rightfully called the skew orthogonal Schur function. For k = 1, the
general branching rule (3.25) reduces to the branching rule for the orthogonal Schur func-
tion [15, Theorem 3.2].

4 Gelfand—Tsetlin pattern representations
for three skew-type functions

In this section, we first derive the formulas for skew Schur functions in Gelfand—Tsetlin patterns
using vertex operators. We then do the same for skew symplectic/orthogonal Schur functions.

We start by recalling a special case of skew Schur functions in terms of vertex opera-
tors [11, Proposition 2.4]. We say a (generalized) partition A interlaces another (generalized)
partition v, denoted as v < A, if A; > v; > A\;11 for all 4.

Lemma 4.1 ([19, p. 72]). For two interlacing partitions v < X\, v = (v1,...,1) and A\ =
(Aly...y A1), one has that

syult) =t

It follows from Lemma 4.1 that skew Schur functions can be written as a sum over Gelfand—
Tsetlin patterns: for partitions g = (p1,..., ) CA=(A1,..., \anN)

N
SYACESEED DI | S

pn=z0<z1<<zny=A1=1
summed over all sequences of partitions p = 29 < 21 < -+ < zy = A, where z; = (21, 2i2,. ..,
2i1+i) satisfy the Gelfand—Tsetlin pattern:
Zit1,j < Zij-1 < Zig1,5-1 for 2<j<I+i+1

Using the similar method as in [11], we can get the Gelfand—Tsetlin pattern formulas for
skew symplectic (orthogonal) Schur functions sp,,, (aci) (o A (xi)) We start by proving three
lemmas.

Lemma 4.2. For any integer m and generalized partitions o« = (a1,...,ax), 8= (B1,---, Br+2),
one has

P Y VY EET) <o,
i<m,j<m+1
Proof. From (2.3) and (2.6), we know that Y*|3°P) = 0 for j < —p;. Therefore,
> YY) = > YV |5)
i<m, j<m+1 —B1—1<i<m, —B1<j<m+1
== > Vi Yt a)
—B1—1<i<m, —f1<j<m+1

- Y wwe,

—B1—1<a<m, —fB1<b<m+1

therefore 3=, i1y Yi*Yj*tHj |3°P) = 0, which completes the proof. [
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Corollary 4.3. For any integer m and generalized partition o = (av, ..., o),

@S v —o

i<m,j<m+1
Lemma 4.4. For generalized partitions v = (v1,...,1) and A = (A1,...,\41), one has
SDA /1 (ti) — Z £2lal=A=|v]
v<a<A

summed over all generalized partitions o such that v < o < .

Proof. It follows from equation (3.15) that

l

WPIr ()= > H () O Ys, Y5, (4.1)

101,500,810 j=1
where h; (ti) =t T2 2 = t_i:?ﬂ. Since Y2 ;Y" = 0 and Corollary 4.3, we
have

Z <O’Y>k Y* ( -1 __ ti+2) (tl/lfj o tj*l/l+2)

it —j
iZVl+17jZl/l
- Z <0|inij(—ti+2+”l*j — tjfuz+2—i)
iZVl+1,j>Vl
— Z <0|Y*z _*J( ti+2+Vl_j _ tj_l/l+2—i)
i>i>v+1
+ Z O|Y*z jj ti+2+yl—j o tj_yl+2_2.)
11— 1>J2Vl
- Z (O] Y2, Y, (—7 2 gmmit2=)
j>i>y+1
+ Z O|Y* z+1(tl+2+yl ]_|_tj v 42— z)
i— 1>_]>l/l
— Z <0|Y*’L _*]( tZ+2+Vl—] _ tj_yl+2_’i)
jzizy+1
+ Z o|y*, vy*. (tn+4+1/l—m n tm_Vl—n)
nz>m>v;+1
- O|Y* Y (PHatvi—i p pimvi—d _ yit24n—j _ gi—wvit2-i
? J
j>izy+1
= Y O (- R (),
jzizy+1

where we have split ¢ > v+ 1, j > yyintoi —j3=1,7—7 > 1 and ¢+ — 57 < 0, in other words,
i=j+1,i—1>j>y,5>i>1y+1. Thus

> (), (F5) OV Y,

i,4;>0

— a2 Z O|Yj2Yjul i (t*i _ ti+2) (t*il . til+2)
1 — ) 1,510

- Z Y Y, i hi(E5) i, (£5)

0<i<p;,%4;>0
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+ W Z <0|Y_*iY_*Vl—il (t—z _ tz+2) (t—zl _ tZH_Q)
N i>v+1,4;>0

= > oYY, () () + D (O ke (8) By ().

0<i<y, 4,20 vty >izy+1

Setting v1 = v; + 4 > 2 = ¢ > 0, then the above equation becomes

> hi(t) b () OV Y,

1,i;>0

- Z <0|Yj72 Y2, Pmingra.n) (ti> Py —max{yz.n} (ti) :

max{vyz2,v} <71

Continuing the process, equation (4.1) becomes

(WP I0 ()

l
Z<)‘5p‘hmin{>\z+1,w} (ti) ( H hmin{/\j7Vj—1}—max{kj+1,l’j} (ti)> hAl—maX{MM} (ti)
A

Jj=2

l
- ZO‘SP‘hmin{)\Hlvl’l} (ti)tmm{)\lﬂw} < H hmin{/\j7Vj71}*max{>\j+1ﬂjj} (ti)
A =2

t)\1+max{>\2,u1}t—|)\|—\y\

X tmin{kj7Vj_1}+maX{>\j+1’Vj}> h)\1 —max{Az,v1} (t:t)

=S ST gRlal-lA-l,
A

v<a<A
where we use the fact that

l l
Al + |v] = min{ N1, } + Z min{\;, vj_1} + Z max{\ji1,7;} + A1 +max{o, v}

j=2 Jj=2
and the notations
0 < oyq1 < min{N41, v}, max{\j+1,7;} < a; <min{\;,vj_1},
max{A, 1} < a3 < Ap.
Thus the proof is completed. |
Lemma 4.5. For generalized partitions v = (v1,...,v) and X = (A1,...,\i1), one has

OA/V(ti) = Z (1+ 5/\l+1>05ul,0)t2‘a|_|)“_|y|

v<a=<A\
summed over all partitions o such that v < o < X and g1 € {0, min{\; 41,1} }.

Proof. Using the same method for Lemma 4.4, we have

WP () = S0 ot 4 grintousion)
A

l
X ( H hmin{kj,Vj_l}—max{)\j+1,l/j} (ti)> h)\l—max{)Q,Vl} (t:t)

i=2
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l
_ Z )\o’ 1 + t2 mm{)\Hl,le} <H hmin{)\j,uj,l}fmax{)\jJrl,z/j} (ti)tmln{/\j,l/j1}+max{)\j+1,yj})
A =2

><h/\1 max{)\2 v} (ti)t)\1+max{)\27y1}t—|,\|_‘,/|

=D > (146, 500,0) 2RI
A

v<a<A
summed over « such that v < a < X and a1 € {0, min{ A1, 1}}. |
The following theorem directly follows from Lemmas 4.4 and 4.5.

Theorem 4.6. For generalized partitions = (p1,...,p) C A= (A1,...,\ixnN), one has

N
SpA/;L(xi) _ Z Hm?|22i—1|_|32i|_|22i—2|7 (4.2>

pn=z0=<z1<--<zoN=A1=1
N

+ 2‘Zli7 ‘*‘Zli|*‘zli7 |
O)‘/“(x ) - Z H (1 +5zé l+z>062éi—2,l+i—1’0)xi S o (4.3)
p=z{=z < <zh =N i=1
where generalized partitions zp = (Zk,h cey 2 lﬂm) satisfy the symplectic Gelfand—Tsetlin pat-
’ 2
tern

k+1
2yl < 21 < 2yl Jor 2<j5 <1+ [ > -‘

and generalized partitions z;, = (Z;c,b e ) satisfy the orthogonal Gelfand—Tsetlin pattern

/
PR AT
k+1
Z]:;—}—Lj S lei‘,j—l S Z;C-Fl,j—l fO'r 2 < ] < l —'— ’7 2 —‘

subject to Zéifl,l+i € {O’min {Zéi,l+i’ Z§i72,l+i71}}'

Remark 4.7. One can find an equivalent statement of (4.2) in [2], which defined the symplectic
Gelfand—Tsetlin pattern by induction. For u = @, (4.2) recovers the classical Gelfand—Tsetlin
patterns for symplectic/orthogonal Schur functions [22, p. 310], and (4.3) reduces to the multi-
orthogonal Gelfand—Tsetlin pattern [22, p. 324].

5 Cauchy-type identities and general branching rules

In this section, we give a new proof of Cauchy identities for (symplectic/orthogonal) Schur
functions by the method of vertex operators. This approach is logically independent of the
Jacobi—-Trudi formula. The method can be further extended to skew Schur functions as well as
skew symplectic/orthogonal Schur functions.

Lemma 5.1. For x = (z1,22,...,2zN), we have

~({=z})|0) = ZSA (5.1)
I'_({z})|0) = H (1 —zizy) 125)\ |AP),

1<i<j<N

T ({zploy= [ 0 —azy)” ZSA )|A°),

1<i<j<N

where the sum is over all partitions \ with [(\) < N.
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Proof. We first prove (5.1) by a similar method as in Proposition 3.1, which is different from
that of [11]. Using the relations

-1
X(2)[4(z71) =T_(2) and Ty (27D (20) = (1 - Z) T (20)T4 (271),

one has

z;\
Py = I (1—;@,) X(z1)- - X(ax)|0)

1<i<j<N
-1
T
= ] <1—x{> S oaltafV X e Xy |0). (5.2)
1<i<j<N t N1, N

Using X;X; = —X;11X;_1, the factors can be shuffied into the following expression:

6(0—>X7)\1 e X*)\N = X_)\g(l)+0(1)_1 e X—)\U(i)-‘ra(i)—i e X—/\G<N)+U(N)—N7 (53>

where o € Sy. Thus the coefficient of [A\) = X_y, --- X_,,10) in I'_({z})]0) (5.2) is

—1
.%'] G'(l) 0'(1)+1 )\0(1)—0'(2)—|—Z )\U(N)—U(N)+N
I <1_xi> S e(o)r) ) o

1<i<j<N o
- -1 0(1) c(D+N  Ag@y—o(@+N A= (N)+N
= (z; — xj) T Ty

1<i<j<N
Aj+N—j Aj+N—j
det( )1§i,j§N _ de t( )1§i,j§N — s(2)
[icicjen(@i —25) det (27 7)o, jn

Then the relation (2.10) gives (A|T'_({x})|0) = sx(x) for any A, subsequently

C_({zh)lo) = Y sa(@)|A).

l(A))\gN

The other two relations can be proved similarly with the help of

e(0)Yn - Yoay =Yoo to)—1 You, o= Yod, oy 4o (V)= N>

e()Woiy -+ Wony = Wox, ao)—1 Won, ytot—i = W, () +o(N) - N> (5.4)
where o € Sy. |

By direct calculation, we have the following two lemmas.

Lemma 5.2. From the commutation relations (2.1) and (3.4), we have

O+ ({=})I'-({y})[0) = H H —xiy;)

i=1j=1

where . = (x1,...,2N), Y= (Y1,---,YK)-

Now we study some cases of the inner product (0|T'y({z})I'_({y})|0) related to symmetric
functions. Due to (2.10)—(2.12), (3.7), (3.13), (3.21) and Lemma 5.1, we have the following
result.
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Lemma 5.3. Forx = (z1,...,2n), y = (Y1,...,YN), T= = (mf,...,xﬁ), we have

OIFL({zHI-({yho) = D sa(@)sa(y).

Oy ({=* -0y = I Q=wmw)™ D spale®)saw),

<O‘F+({wi})r—({y})’0>: H (1—yewn)™" Z OA(mi)s,\(y).
A

Combining Lemmas 5.2 and 5.3, we can prove the classical Cauchy identities associated to
Schur functions, symplectic and orthogonal Schur functions respectively.

Theorem 5.4 ([4, 14, 25]). Let x = (x1,...,2n), ¥y = (y1,...,yN), o = (xi,a:fv) Then

N

Y. o s@sa) = [T —2ig) ™

ij=1

ST spa(@H)s) = [0 —za) (1 —27)] 7 T Q= wew),
A

ij=1 1<k<I<N

ox(z*)sA(y) = H (1= 2y (1 — 27 yy)] H (1 — vy,

ij=1 1<k<I<N

where each summation is over partitions X\ with [(A) < N.

The following is a generalization of Lemma 5.1.

Lemma 5.5. For a generalized partition p = (1, ..., ;) and x = (z1,22,...,2N), we have
T ({zDl) = D suu@)N), (5.5)
)24 N
I ({zPlp®)y = J[ Q-zaxp)™ D S3u@0NP), (5.6)
1<i<j<N )\:()\1,...,)\[+N)

P-({ePle) = JI Q-wap)™ IVACIIRE

1<i<j<N A=(A1,es An)

where the second and third sums are over generalized partitions X = (A1,..., \ipn) with zeros
parts allowed in the end, and

i/u(l’)

with

Cij:{

I+N
o det(eyy); i
— e
det (z; )1§i,j§N
Aj—j+N .
AR 1<i<N,

)

Mo woryii(0), N41i< N AL
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Proof. We only prove (5.6), as the others can be handled similarly. By definition (2.2), we
have

1

I_({a}) = Y(z1)-- Y(en) Ty ({27}),

—1
H1§i<j§N(1 - mil’j)(l - Z; xj)
where 2+ = (:ric, .. ,xﬁ) It is easy to check that (by vertex operator calculus)

Pl Y () = =y Y0, ({24),

LI, (1— wzz)(l - x;lz)
thus
L ()Y = 5 bl Yol ({a5)).
i>0
Then
[T -y (t a7 a)r-({a})n®)
1<i<j<N

=Y(x1) - Y(zn) Z hkN+1 (xi) T hkN+z (:B:t)y_lﬂ"‘kl\’+1 o Y_“l+kN+l‘0>
kNit1,ekN$12>0

- Z lelﬁ T x];VN Z Pkn i (xi) Pk (xi)

k1,....kN€EZ kNit1,ekN$120

X Y7k1 T Y*kNY*,U«l‘FkN-kl T Y*/terkNH ’0>
By (5.4), the coefficient of [A*P) in J];;;<n(1— zi7;) (1 — 27 ') T ({a})|pP) is

det (Cl'j)H_N

ij=1
with
2 I 1<i<N,
Cij = N .
Bvryiie), N41<i<N 4L
By means of the Vandermonde identity, we can get (5.6). |

Remark 5.6. The symmetric rational function S} /M(x) makes sense without the restriction

p C A, while sy /,(z) is zero unless p C A. Unlike the skew symplectic Schur functions sp) Ju (xi),
the symmetric polynomials S§, (x1,...,xn) do not change if we add zeroes to A and p simul-
A p I
taneously. More precisely,
* J—
S()\l7~~~7)\1\4+N717>\M+N)/(.“417--~7/JM7170) (.731, T ’xN) =0,

unless Ay n = 0, and

Szk)‘lv~--v)‘M+N—170)/(N17-~-»MM—170) (21, 2n) = Sz(/\l7~--7)\M+N—1)/(,U«17-~-7M1M—1)(xl’ L TN
Moreover, S?A1,...,>\M+N)/(0M)($1’ co.yxzy) =0 unless Any1 =+ = Ay4n =0, and
S?M,...,AN,OM)/(OM)($1’ ce,IN) = >(k>\1,-..,)\1v)/®(x1’ ce,IN) = SOy, /\N)(:rl, c oy IN).

We now offer a vertex algebraic proof of the Cauchy-type identity for skew Schur functions
19, p. 93], which can be seen as a generalized Cauchy identity for Schur functions.
g Yy y
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Theorem 5.7. For two partitions \ and p,
Zspu So/u() = [ (1 = wiyy) ZSM/T 2)sx- (Y
7]

where the sum is over all partitions p and T such that the skew Schur functions are defined.

Proof. From (2.10), we can easily deduce that
A lo)el= (AL D 1o (elIN) =
p P

where the sum is over all partitions p. Thus

AT+ {zHP-({y bl = AT+ ({=}) Z 1) Pl —({y}) ) = Zsp/A Sp/uly (5.7)
where we have used (3.6). We also have the following relation:
AL+ ({2 )T -y = H(l —2y;) T AT-({y )T+ ({2}) )
= H (1 = zay) " (AT-({y}) Z [T T+ ({2 }) 1)
= H (1 —ziy;) ZSM/T 2)sx/= (Y (5.8)

Comparing (5.7) and (5.8), we get the identity. [ |

We also extend the vertex algebraic approach to derive the Cauchy-type identities for skew
symplectic/orthogonal Schur functions.

Theorem 5.8. For generalized partition p = (p1,...,1) and A= (A1,..., Nyn), one has

Z SPp/u (a%) Sp/a)

p=(p1,-,P14-N)

Z Op/n (xi)S;/)\(y)

N K .
- “)s; 5.10
EE (1 — zy) (1 — 27 'y;) T:g: Tl)OA/T(x )S; /- (1) (5.10)
where 2% = (2F,...,2%), y = (y1, ..., yK)-

Proof. For generalized partition v = (v1, ..., vy), recall the relations (3.16) and (3.24)

WP Y Pl = ), Yo Pl = ),

N=(N1,--,1n) N=(N1,..Mn)

WL Y Il = () Yo Ny = 1),

N=(N1,--Mn) N=(N1,-n)
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where the sum is over all generalized partitions 7 = (11,...,7,). On the one hand,

(WPLL ({a" DI-(fyH V) = (PP ({27)) > [ (P D=y hIXP)

p=(p1,-P14N)

- Z 5P/ (2) S} (1), (5.11)

p=(p1,-sP14-N)

where we used (3.10) and (5.6). On the other hand,

(P04 ({2 )T ({yh)IAP)
N K 1 . S S X ;
Ul = Sy Wi 20 et (e h)

T=(T1,---,T1)

N K
1 *
=111 (1= iy;) (1 — a7 'yy) > s ()8, () (5.12)

T=(T14e-,7T1)

Comparing (5.11) with (5.12), we can get (5.9). The relation (5.10) can be proved similarly. W

Remark 5.9. The generalized partition 7 in the right-hand side of (5.12) is contained in the
generalized partition A. For y = (ON ), A= (()N ), relation (5.12) recovers the classical Cauchy
identity for Schur functions

Z sp(l‘l,xl_l,...,:EN,x&l)sp(yl,...,yN): R 1 —
p=(p1,-0pN) Hi:l Hj:l(l - a:,;yj)(l - ?Jj)

due to Remark 3.7 and the fact that the generalized partition 7 have to be (ON )

Remark 5.10. In [16], Lam studied some general symmetric functions via a boson-fermion
correspondence. It will be interesting to study and realize the skew symmetric functions using
vertex operators.

Added in proof. In the current paper posted on arXiv in 2022, among other things we
have derived the Jacobi-Trudi formulas for the skew Schur symplectic functions and the skew
Schur orthogonal functions in terms of the (generalized) homogeneous symmetric functions. We
recently noticed that [1] has found a combinatorial proof of the alternative Jacobi-Trudi formulas
in terms of elementary symmetric functions in 2023. We will also give a vertex algebraic proof
of the latter in a forthcoming paper.

A Another proof of Proposition 3.1

In this appendix, we give a simple vertex algebraic proof of Proposition 3.1 and (5.5).

Proof. From the definition of X (z), we have

HEDXE) = [[ = X e,

=1

ie.,

{2 X0 =D ki) Xnp Dy ({2}).

>0
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Thus

+{z)A) =T ({z}) X, ... X5, 10)
= Z hi1 (x) T hik (x)X—)\l-‘er e 'X—)\k+ik|0>

i1,ei >0

= Z E hz\l— U(l)-i-O'(l) 1( ) o h‘)\k—l/a(k)-‘ra(k)—k(x)X—VU(1>+U(1)—1' o X—Vo(k>+0'(k‘)—k|0>

v g€Sy

= Zdet(h)\i—uj—i-i-j( ,j 1|V ZSA/V

where we have used (5.3) and the fact I'y ({})|0) = |0). By (2.10), we have shown Proposi-
tion 3.1. Similarly, using (3.5) and (2.10), we can get

AP ({z 1)) = saju(2)-

It is clear that

~{=Dl) =D sau(@)A). u
nCA
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