Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 033, 18 pages      arXiv:2310.10223      https://doi.org/10.3842/SIGMA.2024.033

A Laurent Phenomenon for the Cayley Plane

Oliver Daisey and Tom Ducat
Department of Mathematical Sciences, Durham University, Upper Mountjoy Campus, Stockton Road, Durham DH1 3LE, UK

Received October 22, 2023, in final form April 11, 2024; Published online April 15, 2024

Abstract
We describe a Laurent phenomenon for the Cayley plane, which is the homogeneous variety associated to the cominuscule representation of $E_6$. The corresponding Laurent phenomenon algebra has finite type and appears in a natural sequence of LPAs indexed by the $E_n$ Dynkin diagrams for $n\leq6$. We conjecture the existence of a further finite type LPA, associated to the Freudenthal variety of type $E_7$.

Key words: Laurent phenomenon; cluster structure; mirror symmetry; Cayley plane.

pdf (572 kb)   tex (75 kb)  

References

  1. Coxeter H.S.M., Regular polytopes, 3rd ed., Dover Publications, Inc., New York, 1973.
  2. Daisey O., Laurent phenomenon algebra seed cell, available online at https://oliverdaisey.github.io/code.html.
  3. Dolgachev I.V., Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge, 2012.
  4. Ducat T., The 3-dimensional Lyness map and a self-mirror log Calabi-Yau 3-fold, Manuscripta Math. 174 (2024), 87-140, arXiv:2105.07843.
  5. Geiß C., Leclerc B., Schröer J., Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble) 58 (2008), 825-876, arXiv:math.RT/0609138.
  6. Gross M., Hacking P., Keel S., Birational geometry of cluster algebras, Algebr. Geom. 2 (2015), 137-175, arXiv:1309.2573.
  7. Gross M., Hacking P., Keel S., Kontsevich M., Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), 497-608, arXiv:1411.1394.
  8. Lam T., Pylyavskyy P., Laurent phenomenon algebras, Camb. J. Math. 4 (2016), 121-162, arXiv:1206.2611.
  9. Moufang R., Alternativkörper und der Satz vom vollständigen Vierseit $(D_9)$, Abh. Math. Sem. Univ. Hamburg 9 (1933), 207-222.
  10. Scott J.S., Grassmannians and cluster algebras, Proc. London Math. Soc. (3) 92 (2006), 345-380, arXiv:math/0311148.
  11. Snow D.M., Homogeneous vector bundles, in Group Actions and Invariant Theory, CMS Conf. Proc., Vol. 10, American Mathematical Society, Providence, RI, 1989, 193-205.
  12. Spacek P., Wang C., Towards Landau-Ginzburg models for cominuscule spaces via the exceptional cominuscule family, J. Algebra 630 (2023), 334-393, arXiv:2204.03548.

Previous article  Next article  Contents of Volume 20 (2024)