|
SIGMA 20 (2024), 032, 13 pages arXiv:2309.15673
https://doi.org/10.3842/SIGMA.2024.032
Contribution to the Special Issue on Differential Geometry Inspired by Mathematical Physics in honor of Jean-Pierre Bourguignon for his 75th birthday
Kähler-Yang-Mills Equations and Vortices
Oscar García-Prada
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM),Nicolás Cabrera 13-15, Cantoblanco, 28049 Madrid, Spain
Received October 02, 2023, in final form April 04, 2024; Published online April 11, 2024
Abstract
The Kähler-Yang-Mills equations are coupled equations for a Kähler metric on a compact complex manifold and a connection on a complex vector bundle over it. After briefly reviewing the main aspects of the geometry of the Kähler-Yang-Mills equations, we consider dimensional reductions of the equations related to vortices — solutions to certain Yang-Mills-Higgs equations.
Key words: Kähler-Yang-Mills equations; vortices; gravitating vortices; dimensional reduction; stability.
pdf (412 kb)
tex (26 kb)
References
- Álvarez-Cónsul L., García-Fernández M., García-Prada O., Coupled equations for Kähler metrics and Yang-Mills connections, Geom. Topol. 17 (2013), 2731-2812, arXiv:1102.0991.
- Álvarez-Cónsul L., Garcia-Fernandez M., García-Prada O., Gravitating vortices, cosmic strings, and the Kähler-Yang-Mills equations, Comm. Math. Phys. 351 (2017), 361-385, arXiv:1510.03810.
- Álvarez-Cónsul L., Garcia-Fernandez M., García-Prada O., On the Kähler-Yang-Mills-Higgs equations, Pure Appl. Math. Q. 15 (2019), 1181-1217, arXiv:1807.10691.
- Álvarez-Cónsul L., Garcia-Fernandez M., García-Prada O., Pingali V.P., Gravitating vortices and the Einstein-Bogomol'nyi equations, Math. Ann. 379 (2021), 1651-1684, arXiv:1606.07699.
- Álvarez-Cónsul L., Garcia-Fernandez M., García-Prada O., Pingali V.P., Yao C., Symplectic reduction by stages and gravitating vortices, in preparation.
- Álvarez-Cónsul L., Garcia-Fernandez M., García-Prada O., Pingali V.P., Yao C., Obstructions to the existence of solutions of the self-dual Einstein-Maxwell-Higgs equations on a compact surface, Bull. Sci. Math. 183 (2023), 103233, 14 pages, arXiv:2201.03455.
- Atiyah M.F., Bott R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615.
- Bando S., Mabuchi T., Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., Vol. 10, North-Holland, Amsterdam, 1987, 11-40.
- Bourguignon J.-P., Ezin J.-P., Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc. 301 (1987), 723-736.
- Bourguignon J.-P., Lawson Jr. H.B., Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), 189-230.
- Bradlow S.B., Vortices in holomorphic line bundles over closed Kähler manifolds, Comm. Math. Phys. 135 (1990), 1-17.
- Bradlow S.B., García-Prada O., Stable triples, equivariant bundles and dimensional reduction, Math. Ann. 304 (1996), 225-252, arXiv:alg-geom/9401008.
- Bradlow S.B., García-Prada O., Gothen P.B., Surface group representations and ${\rm U}(p,q)$-Higgs bundles, J. Differential Geom. 64 (2003), 111-170, arXiv:math.AG/0211431.
- Bradlow S.B., García-Prada O., Gothen P.B., Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann. 328 (2004), 299-351, arXiv:math.AG/0211428.
- Comtet A., Gibbons G.W., Bogomol'nyi bounds for cosmic strings, Nuclear Phys. B 299 (1988), 719-733, arXiv:0809.4384.
- Donaldson S.K., A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom. 18 (1983), 269-277.
- Donaldson S.K., Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. 50 (1985), 1-26.
- Donaldson S.K., Remarks on gauge theory, complex geometry and $4$-manifold topology, in Fields Medallists' Lectures, World Sci. Ser. 20th Century Math., Vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ,, 1997, 384-403.
- Fujiki A., Moduli space of polarized algebraic manifolds and Kähler metrics, 1992, 173-191, arXiv:1810.02576.
- Garcia-Fernandez M., Coupled equations for Kähler metrics and Yang-Mills connections, Ph.D. Thesis, Instituto de Ciencias Matemáticas, Madrid, 2009, arXiv:1102.0985.
- Garcia-Fernandez M., Pritham Pingali V., Yao C., Gravitating vortices with positive curvature, Adv. Math. 388 (2021), 107851, 42 pages, arXiv:1911.09616.
- Garcia-Fernandez M., Tipler C., Deformation of complex structures and the coupled Kähler-Yang-Mills equations, J. Lond. Math. Soc. 89 (2014), 779-796, arXiv:1301.4480.
- García-Prada O., Invariant connections and vortices, Comm. Math. Phys. 156 (1993), 527-546.
- García-Prada O., Dimensional reduction of stable bundles, vortices and stable pairs, Internat. J. Math. 5 (1994), 1-52.
- García-Prada O., A direct existence proof for the vortex equations over a compact Riemann surface, Bull. Lond. Math. Soc. 26 (1994), 88-96.
- García-Prada O., Heinloth J., The $y$-genus of the moduli space of ${\rm PGL}_n$-Higgs bundles on a curve (for degree coprime to $n$), Duke Math. J. 162 (2013), 2731-2749, arXiv:1207.5614.
- García-Prada O., Heinloth J., Schmitt A., On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc. (JEMS) 16 (2014), 2617-2668, arXiv:1104.5558.
- Jaffe A., Taubes C., Vortices and monopoles: Structure of static gauge theories, Prog. Phys., Vol. 2, Birkhäuser, Boston, MA, 1980.
- Kazdan J.L., Warner F.W., Curvature functions for compact $2$-manifolds, Ann. of Math. 99 (1974), 14-47.
- Keller J., Tønnesen-Friedman C.W., Nontrivial examples of coupled equations for Kähler metrics and Yang-Mills connections, Cent. Eur. J. Math. 10 (2012), 1673-1687, arXiv:1109.5085.
- Linet B., A vortex-line model for infinite straight cosmic strings, Phys. Lett. A 124 (1987), 240-242.
- Linet B., On the supermassive ${\rm U}(1)$ gauge cosmic strings, Classical Quantum Gravity 7 (1990), L75-L79.
- Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, 3rd ed., Ergeb. Math. Grenzgeb. (2), Vol. 34, Springer, Berlin, 1994.
- Narasimhan M.S., Seshadri C.S., Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540-567.
- Nielsen H.B., Olesen P., Vortex-line models for dual strings, Nuclear Phys. B 61 (1973), 45-61.
- Noguchi M., Yang-Mills-Higgs theory on a compact Riemann surface, J. Math. Phys. 28 (1987), 2343-2346.
- Taubes C.H., Arbitrary $N$-vortex solutions to the first order Ginzburg-Landau equations, Comm. Math. Phys. 72 (1980), 277-292.
- Taubes C.H., On the equivalence of the first and second order equations for gauge theories, Comm. Math. Phys. 75 (1980), 207-227.
- Uhlenbeck K., Yau S.-T., On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), 257-293.
- Uhlenbeck K., Yau S.-T., A note on our previous paper: ''On the existence of Hermitian-Yang-Mills connections in stable vector bundles'', Comm. Pure Appl. Math. 42 (1989), 703-707.
- Witten E., Some exact multi-pseudoparticle solutions of classical Yang-Mills theory, Phys. Rev. Lett. 38 (1977), 121-124.
- Yang Y.S., An equivalence theorem for string solutions of the Einstein matter-gauge equations, Lett. Math. Phys. 26 (1992), 79-90.
- Yang Y.S., Self-duality of the gauge field equations and the cosmological constant, Comm. Math. Phys. 162 (1994), 481-498.
- Yang Y.S., Prescribing topological defects for the coupled Einstein and abelian Higgs equations, Comm. Math. Phys. 170 (1995), 541-582.
- Yang Y.S., Static cosmic strings on $S^2$ and criticality, Proc. Roy. Soc. London Ser. A 453 (1997), 581-591.
|
|