Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 030, 33 pages      arXiv:2302.13649      https://doi.org/10.3842/SIGMA.2024.030

Locally Homogeneous Holomorphic Geometric Structures on Projective Varieties

Indranil Biswas a and Benjamin McKay b
a) Department of Mathematics, Shiv Nadar University, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
b) School of Mathematical Sciences, University College Cork, Cork, Ireland

Received April 01, 2023, in final form March 29, 2024; Published online April 08, 2024

Abstract
For any smooth projective variety with holomorphic locally homogeneous structure modelled on a homogeneous algebraic variety, we determine all the subvarieties of it which develop to the model.

Key words: complex projective manifold; Cartan geometry; Moishezon manifold.

pdf (563 kb)   tex (46 kb)  

References

  1. Alekseevsky D.V., Flag manifolds, Zb. Rad. Mat. Inst. Beograd. (N.S.) 6 (1997), 3-35.
  2. Atiyah M.F., Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207.
  3. Atiyah M.F., Bott R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615.
  4. Biswas I., Dumitrescu S., Holomorphic Cartan geometries on complex tori, C. R. Math. Acad. Sci. Paris 356 (2018), 316-321, arXiv:1710.05874.
  5. Biswas I., Gómez T.L., Connections and Higgs fields on a principal bundle, Ann. Global Anal. Geom. 33 (2008), 19-46.
  6. Biswas I., McKay B., Holomorphic Cartan geometries, Calabi-Yau manifolds and rational curves, Differential Geom. Appl. 28 (2010), 102-106, arXiv:1009.5801.
  7. Biswas I., McKay B., Holomorphic Cartan geometries and rational curves, Complex Manifolds 3 (2016), 145-168, arXiv:1005.1472.
  8. Bogomolov F.A., On the decomposition of Kähler manifolds with a trivial canonical class, Math. USSR Sb. 22 (1974), 580-583.
  9. Borel A., Linear algebraic groups, 2nd ed., Grad. Texts Math., Vol. 126, Springer, New York, 1991.
  10. Campana F., Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4) 25 (1992), 539-545.
  11. Campana F., Claudon B., Eyssidieux P., Représentations linéaires des groupes kählériens: factorisations et conjecture de Shafarevich linéaire, Compos. Math. 151 (2015), 351-376, arXiv:1302.5016.
  12. Čap A., Slovák J., Parabolic geometries. I: Background and general theory, Math. Surv. Monogr., Vol. 154, American Mathematical Society, Providence, RI, 2009.
  13. Cartan É., La méthode de repère mobile, la théorie des groupes continus, et les espaces généralisés, Actualités Sci. Industrielles, Vol. 194, Hermann, Paris, 1935.
  14. Cascini P., Rational curves on complex manifolds, Milan J. Math. 81 (2013), 291-315.
  15. Douady A., Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1966), 1-95.
  16. Ehresmann C., Les connexions infinitésimales dans un espace fibré différentiable, in Colloque de Topologie, Georges Thone, Liège, 1951, 29-55.
  17. Fujiki A., On the structure of compact complex manifolds in ${\mathcal C}$, in Algebraic Varieties and Analytic Varieties (Tokyo, 1981), Adv. Stud. Pure Math., Vol. 1, North-Holland, Amsterdam, 1983, 231-302.
  18. Goldman W.M., Locally homogeneous geometric manifolds, in Proceedings of the International Congress of Mathematicians. Vol. II, Hindustan Book Agency, New Delhi, 2010, 717-744, arXiv:1003.2759.
  19. Grauert H., Peternell T., Remmert R. (Editors), Several complex variables. VII, Encycl. Math. Sci., Vol. 74, Springer, Berlin, 1994.
  20. Grauert H., Remmert R., Coherent analytic sheaves, Grundlehren Math. Wiss., Vol. 265, Springer, Berlin, 1984.
  21. Grauert H., Remmert R., Theory of Stein spaces, Class. Math., Springer, Berlin, 2004.
  22. Hartshorne R., Algebraic geometry, Grad. Texts Math., Vol. 52, Springer, New York, 1977.
  23. Hilgert J., Neeb K.-H., Structure and geometry of Lie groups, Springer Monogr. Math., Springer, New York, 2012.
  24. Hochschild G.P., Basic theory of algebraic groups and Lie algebras, Grad. Texts Math., Vol. 75, Springer, New York, 1981.
  25. Hörmander L., An introduction to complex analysis in several variables, 3rd ed., North-Holland Math. Libr., Vol. 7, North-Holland Publishing Co., Amsterdam, 1990.
  26. Huckleberry A.T., The classification of homogeneous surfaces, Exposition. Math. 4 (1986), 289-334.
  27. Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, 2nd ed., Camb. Math. Libr., Cambridge University Press, Cambridge, 2010.
  28. Iitaka S., Algebraic geometry, North-Holland Math. Libr., Vol. 24, Springer, New York, 1982.
  29. Jacobson N., Basic algebra. I, 2nd ed., W. H. Freeman and Company, New York, 1985.
  30. Jahnke P., Radloff I., Projective uniformization, extremal Chern classes and quaternionic Shimura curves, Math. Ann. 363 (2015), 753-776, arXiv:1404.2848.
  31. Katzarkov L., On the Shafarevich maps, in Algebraic Geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., Vol. 62, American Mathematical Society, Providence, RI, 1997, 173-216.
  32. Katzarkov L., The geometry of large fundamental groups, J. Math. Sci. (New York) 94 (1999), 1100-1110.
  33. Kawamata Y., Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math. 363 (1985), 1-46.
  34. Kawamata Y., On the length of an extremal rational curve, Invent. Math. 105 (1991), 609-611.
  35. Kobayashi S., Differential geometry of complex vector bundles, Publ. Math. Soc. Japan, Vol. 15, Princeton University Press, Princeton, NJ, 1987.
  36. Kobayashi S., Ochiai T., Holomorphic projective structures on compact complex surfaces, Math. Ann. 249 (1980), 75-94.
  37. Kollár J., Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), 177-215.
  38. Kollár J., Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), Vol. 32, Springer, Berlin, 1996.
  39. Lai C.-J., Varieties fibered by good minimal models, Math. Ann. 350 (2011), 533-547, arXiv:0912.3012.
  40. Lazarsfeld R., Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergeb. Math. Grenzgeb. (3), Vol. 48, Springer, Berlin, 2004.
  41. Loray F., Pereira J.V., Touzet F., Singular foliations with trivial canonical class, Invent. Math. 213 (2018), 1327-1380, arXiv:1107.1538.
  42. Matsushima Y., Morimoto A., Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 88 (1960), 137-155.
  43. McKay B., Holomorphic Cartan geometries on uniruled surfaces, C. R. Math. Acad. Sci. Paris 349 (2011), 893-896, arXiv:1105.4732.
  44. McKay B., Complex homogeneous surfaces, J. Lie Theory 25 (2015), 579-612, arXiv:1406.2487.
  45. McKay B., The Hartogs extension problem for holomorphic parabolic and reductive geometries, Monatsh. Math. 181 (2016), 689-713, arXiv:1302.5796.
  46. McKay B., Holomorphic geometric structures on Kähler-Einstein manifolds, Manuscripta Math. 153 (2017), 1-34, arXiv:1308.1613.
  47. McKay B., An introduction to Cartan geometries, arXiv:2302.14457.
  48. Milne J.S., Algebraic groups, Camb. Stud. Adv. Math., Vol. 170, Cambridge University Press, Cambridge, 2017.
  49. Mori S., Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133-176.
  50. Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, 3rd ed., Ergeb. Math. Grenzgeb. (2), Vol. 34, Springer, Berlin, 1994.
  51. Onishchik A.L., Vinberg E.B. (Editors), Lie groups and Lie algebras. III. Structure of Lie groups and Lie algebras, Encyclopaedia Math. Sci., Vol. 41, Springer, Berlin, 1994.
  52. Pereira J.V., Touzet F., Foliations with vanishing Chern classes, Bull. Braz. Math. Soc. (N.S.) 44 (2013), 731-754, arXiv:1210.5916.
  53. Procesi C., Lie groups: An approach through invariants and representations, Universitext, Springer, New York, 2007.
  54. Rinow W., Über Zusammenhänge zwischen der Differentialgeometrie im Großen und im Kleinen, Math. Z. 35 (1932), 512-528.
  55. Serre J.-P., Complex semisimple Lie algebras, Springer Monogr. Math., Springer, Berlin, 2001.
  56. Sharpe R.W., Differential geometry: Cartan's generalization of Klein's Erlangen program, Grad. Texts Math., Vol. 166, Springer, New York, 1997.
  57. Sharpe R.W., An introduction to Cartan geometries, Rend. Circ. Mat. Palermo (2) Suppl. (2002), 61-75.
  58. Siu Y.-T., Abundance conjecture, in Geometry and analysis. No. 2, Adv. Lect. Math. (ALM), Vol. 18, International Press, Somerville, MA, 2011, 271-317, arXiv:0912.0576.
  59. Springer T.A., Linear algebraic groups, 2nd ed., Mod. Birkhäuser Class., Birkhäuser, Boston, MA, 2009.
  60. Ueno K., Classification theory of algebraic varieties and compact complex spaces, Lect. Notes Math., Vol. 439, Springer, Berlin, 1975.
  61. Varouchas J., Kähler spaces and proper open morphisms, Math. Ann. 283 (1989), 13-52.
  62. Voisin C., Hodge theory and complex algebraic geometry. I, Camb. Stud. Adv. Math., Vol. 76, Cambridge University Press, Cambridge, 2007.
  63. Zuo K., Representations of fundamental groups of algebraic varieties, Lect. Notes Math., Vol. 1708, Springer, Berlin, 1999.

Previous article  Next article  Contents of Volume 20 (2024)