|
SIGMA 20 (2024), 029, 60 pages arXiv:2304.04365
https://doi.org/10.3842/SIGMA.2024.029
Reflection Vectors and Quantum Cohomology of Blowups
Todor Milanov and Xiaokun Xia
Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
Received May 30, 2023, in final form March 14, 2024; Published online April 05, 2024
Abstract
Let $X$ be a smooth projective variety with a semisimple quantum cohomology. It is known that the blowup $\operatorname{Bl}_{\rm pt}(X)$ of $X$ at one point also has semisimple quantum cohomology. In particular, the monodromy group of the quantum cohomology of $\operatorname{Bl}_{\rm pt}(X)$ is a reflectiongroup. We found explicit formulas for certain generators of the monodromy group of the quantum cohomology of $\operatorname{Bl}_{\rm pt}(X)$ depending only on the geometry of the exceptional divisor.
Key words: Frobenius structures; Gromov-Witten invariants; quantum cohomology.
pdf (792 kb)
tex (66 kb)
References
- Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps. Vol. II. Monodromy and asymptotics of integrals, Monog. Math., Vol. 82, Birkhäuser, Boston, MA, 2012.
- Bateman H., Erdélyi A., Higher transcendental functions. Vol. I, McGraw-Hill Book Co., Inc., New York, 1953.
- Bayer A., Semisimple quantum cohomology and blowups, Int. Math. Res. Not. 2004 (2004), 2069-2083, arXiv:math.AG/0403260.
- Behrend K., Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), 601-617, arXiv:alg-geom/9601011.
- Behrend K., Fantechi B., The intrinsic normal cone, Invent. Math. 128 (1997), 45-88, arXiv:alg-geom/9601010.
- Behrend K., Manin Yu., Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), 1-60, arXiv:alg-geom/9506023.
- Cotti G., Degenerate Riemann-Hilbert-Birkhoff problems, semisimplicity, and convergence of WDVV-potentials, Lett. Math. Phys. 111 (2021), 99, 44 pages, arXiv:2011.04498.
- Dixon A.L., Ferrar W.L., A class of discontinuous integrals, Quart. J. Math. 7 (1936), 81-96.
- Dubrovin B., Geometry of $2$D topological field theories, in Integrable Systems and Quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348, arXiv:hep-th/9407018.
- Dubrovin B., Geometry and analytic theory of Frobenius manifolds, Doc. Math. 2 (1998), 315-326, arXiv:math.AG/9807034.
- Dubrovin B., Painlevé transcendents in two-dimensional topological field theory, in The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287-412, arXiv:math.AG/9803107.
- Dubrovin B., Zhang Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, arXiv:math.DG/0108160.
- Fomenko A., Fuchs D., Homotopical topology, 2nd ed., Grad. Texts in Math., Vol. 273, Springer, Cham, 2016.
- Frenkel E., Givental A., Milanov T., Soliton equations, vertex operators, and simple singularities, Funct. Anal. Other Math. 3 (2010), 47-63, arXiv:0909.4032.
- Fulton W., Intersection theory, 2nd ed., Ergeb. Math. Grenzgeb. (3), Springer, Berlin, 1998.
- Galkin S., Golyshev V., Iritani H., Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures, Duke Math. J. 165 (2016), 2005-2077, arXiv:1404.6407.
- Gathmann A., Gromov-Witten invariants of blow-ups, J. Algebraic Geom. 10 (2001), 399-432, arXiv:math.AG/9804043.
- Gelfand S.I., Manin Yu.I., Methods of homological algebra, 2nd ed., Springer Monog. Math., Springer, Berlin, 2003.
- Givental A., $A_{n-1}$ singularities and $n$KdV hierarchies, Mosc. Math. J. 3 (2003), 475-505, arXiv:math.AG/0209205.
- Givental A.B., Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), 551-568, arXiv:math.AG/0108100.
- Givental A.B., Milanov T.E., Simple singularities and integrable hierarchies, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., Vol. 232, Birkhäuser, Boston, MA, 2005, 173-201, arXiv:math.AG/0307176.
- Grauert H., Remmert R., Coherent analytic sheaves, Grundlehren Math. Wiss., Vol. 265, Springer, Berlin, 1984.
- Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Math., Vol. 151, Cambridge University Press, Cambridge, 2002.
- Hertling C., Manin Yu.I., Teleman C., An update on semisimple quantum cohomology and $F$-manifolds, Proc. Steklov Inst. Math. 264 (2009), 62-69, arXiv:0803.2769.
- Iritani H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016-1079, arXiv:0903.1463.
- Manin Yu.I., Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloquium Publications, Vol. 47, American Mathematical Society, Providence, RI, 1999.
- Manin Yu.I., Merkulov S.A., Semisimple Frobenius (super)manifolds and quantum cohomology of ${\mathbf P}^r$, Topol. Methods Nonlinear Anal. 9 (1997), 107-161, arXiv:alg-geom/9702014.
- Milanov T., The period map for quantum cohomology of $\mathbb{P}^2$, Adv. Math. 351 (2019), 804-869, arXiv:1706.04323.
- Milanov T., Saito K., Primitive forms and vertex operators, in preparation.
- Nori M.V., Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. 16 (1983), 305-344.
- Orlov D.O., Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Russian Acad. Sci. Izv. Math. 41 (1993), 133-141.
- Paris R.B., Kaminski D., Asymptotics and Mellin-Barnes integrals, Encyclopedia of Math. Appl., Vol. 85, Cambridge University Press, Cambridge, 2001.
- Saito K., Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983), 1231-1264.
- Saito M., On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989), 27-72.
- Shimada I., Lectures on Zariski Van-Kampen theorem, available at http://www.math.sci.hiroshima-u.ac.jp/~shimada/LectureNotes/LNZV.pdf.
|
|