|
SIGMA 20 (2024), 027, 30 pages arXiv:2308.10125
https://doi.org/10.3842/SIGMA.2024.027
Contribution to the Special Issue on Symmetry, Invariants, and their Applications in honor of Peter J. Olver
mKdV-Related Flows for Legendrian Curves in the Pseudohermitian 3-Sphere
Annalisa Calini a, Thomas Ivey a and Emilio Musso b
a) Department of Mathematics, College of Charleston, Charleston, SC 29424, USA
b) Department of Mathematical Sciences, Politecnico di Torino, Italy
Received September 26, 2023, in final form March 13, 2024; Published online April 02, 2024
Abstract
We investigate geometric evolution equations for Legendrian curves in the 3-sphere which are invariant under the action of the unitary group ${\rm U}(2)$. We define a natural symplectic structure on the space of Legendrian loops and show that the modified Korteweg-de Vries equation, along with its associated hierarchy, are realized as curvature evolutions induced by a sequence of Hamiltonian flows. For the flow among these that induces the mKdV equation, we investigate the geometry of solutions which evolve by rigid motions in ${\rm U}(2)$. Generalizations of our results to higher-order evolutions and curves in similar geometries are also discussed.
Key words: mKdV; Legendrian curves; geometric flows; pseudohermitian CR geometry.
pdf (7322 kb)
tex (6306 kb)
References
- Byrd P.F., Friedman M.D., Handbook of elliptic integrals for engineers and physicists, Grundlehren Math. Wiss., Vol. 67, Springer, Berlin, 1954.
- Calini A., Ivey T., Topology and sine-Gordon evolution of constant torsion curves, Phys. Lett. A 254 (1999), 170-178.
- Calini A., Ivey T., Knot types, Floquet spectra, and finite-gap solutions of the vortex filament equation, Math. Comput. Simulation 55 (2001), 341-350.
- Calini A., Ivey T., Integrable geometric flows for curves in pseudoconformal $S^3$, J. Geom. Phys. 166 (2021), 104249, 17 pages, arXiv:1908.02722.
- Calini A., Ivey T., Marí-Beffa G., Remarks on KdV-type flows on star-shaped curves, Phys. D 238 (2009), 788-797, arXiv:0808.3593.
- Calini A., Ivey T., Marí Beffa G., Integrable flows for starlike curves in centroaffine space, SIGMA 9 (2013), 022, 21 pages, arXiv:1303.1259.
- Doliwa A., Santini P.M., An elementary geometric characterization of the integrable motions of a curve, Phys. Lett. A 185 (1994), 373-384.
- Etnyre J.B., Legendrian and transversal knots, in Handbook of Knot Theory, Elsevier, Amsterdam, 2005, 105-185, arXiv:math.SG/0306256.
- Etnyre J.B., Honda K., Knots and contact geometry I: Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001), 63-120, arXiv:math.GT/0006112.
- Goldstein R.E., Petrich D.M., The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 67 (1991), 3203-3206.
- Goldstein R.E., Petrich D.M., Solitons, Euler's equation, and vortex patch dynamics, Phys. Rev. Lett. 69 (1992), 555-558.
- Haller S., Vizman C., A dual pair for the contact group, Math. Z. 301 (2022), 2937-2973, arXiv:1909.11014.
- Heller L., Constrained Willmore tori and elastic curves in 2-dimensional space forms, Comm. Anal. Geom. 22 (2014), 343-369, arXiv:1303.1445.
- Konno K., Wadati M., Simple derivation of Bäcklund transformation from Riccati form of inverse method, Progr. Theoret. Phys. 53 (1975), 1652-1656.
- Kriegl A., Michor P.W., The convenient setting of global analysis, Math. Surveys Monogr., Vol. 53, American Mathematical Society, Providence, RI, 1997.
- Langer J., Perline R., Poisson geometry of the filament equation, J. Nonlinear Sci. 1 (1991), 71-93.
- Langer J., Perline R., Curve motion inducing modified Korteweg-de Vries systems, Phys. Lett. A 239 (1998), 36-40.
- Lawden D.F., Elliptic functions and applications, Appl. Math. Sci., Vol. 80, Springer, New York, 1989.
- Lerario A., Mondino A., Homotopy properties of horizontal loop spaces and applications to closed sub-Riemannian geodesics, Trans. Amer. Math. Soc. Ser. B 6 (2019), 187-214, arXiv:1509.07000.
- Miura R.M., Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9 (1968), 1202-1204.
- Musso E., Liouville integrability of a variational problem for Legendrian curves in the three-dimensional sphere, in Selected Topics in Cauchy-Riemann Geometry, Quad. Mat., Vol. 9, Seconda Università di Napoli, Caserta, 2001, 281-306.
- Musso E., Motions of curves in the projective plane inducing the Kaup-Kupershmidt hierarchy, SIGMA 8 (2012), 030, 20 pages, arXiv:1205.5329.
- Musso E., Nicolodi L., Hamiltonian flows on null curves, Nonlinearity 23 (2010), 2117-2129, arXiv:0911.4467.
- Musso E., Nicolodi L., Salis F., On the Cauchy-Riemann geometry of transversal curves in the 3-sphere, J. Math. Phys. Anal. Geom. 16 (2020), 312-363, arXiv:2004.11350.
- Musso E., Salis F., The Cauchy-Riemann strain functional for Legendrian curves in the 3-sphere, Ann. Mat. Pura Appl. 199 (2020), 2395-2434, arXiv:2003.01713.
- Olver P.J., Applications of Lie groups to differential equations, Grad. Texts in Math., Vol. 107, Springer, New York, 1993.
- Pinkall U., Hamiltonian flows on the space of star-shaped curves, Results Math. 27 (1995), 328-332.
- Vizman C., Induced differential forms on manifolds of functions, Arch. Math. (Brno) 47 (2011), 201-215, arXiv:1111.3889.
- Wadati M., Bäcklund transformation for solutions of the modified Korteweg-de Vries equation, J. Phys. Soc. Japan 36 (1974), 1498-1498.
- Webster S.M., Pseudo-Hermitian structures on a real hypersurface, J. Differential Geometry 13 (1978), 25-41.
|
|