Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 025, 19 pages      arXiv:2302.08193      https://doi.org/10.3842/SIGMA.2024.025

Compatible $E$-Differential Forms on Lie Algebroids over (Pre-)Multisymplectic Manifolds

Noriaki Ikeda
Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

Received November 13, 2023, in final form March 27, 2024; Published online March 31, 2024

Abstract
We consider higher generalizations of both a (twisted) Poisson structure and the equivariant condition of a momentum map on a symplectic manifold. On a Lie algebroid over a (pre-)symplectic and (pre-)multisymplectic manifold, we introduce a Lie algebroid differential form called a compatible $E$-$n$-form. This differential form satisfies a compatibility condition, which is consistent with both the Lie algebroid structure and the (pre-)(multi)symplectic structure. There are many interesting examples such as a Poisson structure, a twisted Poisson structure and a twisted $R$-Poisson structure for a pre-$n$-plectic manifold. Moreover, momentum maps and momentum sections on symplectic manifolds, homotopy momentum maps and homotopy momentum sections on multisymplectic manifolds have this structure.

Key words: Poisson geometry; Lie algebroid; multisymplectic geometry; higher structures.

pdf (495 kb)   tex (30 kb)  

References

  1. Abad C.A., Crainic M., Representations up to homotopy of Lie algebroids, J. Reine Angew. Math. 663 (2012), 91-126, arXiv:0901.0319.
  2. Alexandrov M., Schwarz A., Zaboronsky O., Kontsevich M., The geometry of the master equation and topological quantum field theory, Internat. J. Modern Phys. A 12 (1997), 1405-1429, arXiv:hep-th/9502010.
  3. Bessho T., Heller M.A., Ikeda N., Watamura S., Topological membranes, current algebras and H-flux-R-flux duality based on Courant algebroids, J. High Energy Phys. 2016 (2016), no. 4, 170, 40 pages, arXiv:1511.03425.
  4. Bi Y., Sheng Y., On higher analogues of Courant algebroids, Sci. China Math. 54 (2011), 437-447, arXiv:1003.1350.
  5. Blohmann C., Fernandes M.C.B., Weinstein A., Groupoid symmetry and constraints in general relativity, Commun. Contemp. Math. 15 (2013), 1250061, 25 pages, arXiv:1003.2857.
  6. Blohmann C., Weinstein A., Hamiltonian Lie algebroids, arXiv:1811.11109.
  7. Bonavolontà G., Poncin N., On the category of Lie $n$-algebroids, J. Geom. Phys. 73 (2013), 70-90, arXiv:1207.3590.
  8. Bursztyn H., Martinez Alba N., Rubio R., On higher Dirac structures, Int. Math. Res. Not. 2019 (2019), 1503-1542, arXiv:1611.02292.
  9. Bursztyn H., Radko O., Gauge equivalence of Dirac structures and symplectic groupoids, Ann. Inst. Fourier (Grenoble) 53 (2003), 309-337, arXiv:math.SG/0202099.
  10. Callies M., Frégier Y., Rogers C.L., Zambon M., Homotopy moment maps, Adv. Math. 303 (2016), 954-1043, arXiv:1304.2051.
  11. Cariñena J.F., Crampin M., Ibort L.A., On the multisymplectic formalism for first order field theories, Differential Geom. Appl. 1 (1991), 345-374.
  12. Cattaneo A.S., Schätz F., Introduction to supergeometry, Rev. Math. Phys. 23 (2011), 669-690, arXiv:1011.3401.
  13. Chatzistavrakidis A., Topological field theories induced by twisted R-Poisson structure in any dimension, J. High Energy Phys. 2021 (2021), no. 9, 045, 37 pages, arXiv:2106.01067.
  14. Chatzistavrakidis A., Twisted R-Poisson sigma models, Proc. Sci. 406 (2022), PoS(CORFU2021)271, 20 pages, arXiv:2207.03245.
  15. Crainic M., Fernandes R.L., Lectures on integrability of Lie brackets, in Lectures on Poisson geometry, Geom. Topol. Monogr., Vol. 17, Geometry & Topology Publications, Coventry, 2011, 1-107, arXiv:math.DG/0611259.
  16. Cueca M., The geometry of graded cotangent bundles, J. Geom. Phys. 161 (2021), 104055, 20 pages, arXiv:1905.13245.
  17. Cueca M., Schnitzer J., Deformations of Lagrangian $Q$-submanifolds, arXiv:2309.05580.
  18. Dufour J.-P., Zung N.T., Poisson structures and their normal forms, Prog. Math., Vol. 242, Birkhäuser, Basel, 2005.
  19. Gotay M.J., Isenberg J., Marsden J.E., Montgomery R., Momentum maps and classical relativistic fields. Part I: Covariant field theory, arXiv:physics/9801019.
  20. Grützmann M., Strobl T., General Yang-Mills type gauge theories for $p$-form gauge fields: from physics-based ideas to a mathematical framework or from Bianchi identities to twisted Courant algebroids, Int. J. Geom. Methods Mod. Phys. 12 (2015), 1550009, 80 pages, arXiv:1407.6759.
  21. Hagiwara Y., Nambu-Dirac manifolds, J. Phys. A 35 (2002), 1263-1281.
  22. Hirota Y., Ikeda N., Homotopy momentum sections on multisymplectic manifolds, J. Geom. Phys. 182 (2022), 104667, 16 pages, arXiv:2110.12305.
  23. Ikeda N., Lectures on AKSZ sigma models for physicists, in Noncommutative Geometry and Physics. 4, World Scientific Publishing, Hackensack, NJ, 2017, 79-169, arXiv:1204.3714.
  24. Ikeda N., Momentum sections in Hamiltonian mechanics and sigma models, SIGMA 15 (2019), 076, 16 pages, arXiv:1905.02434.
  25. Ikeda N., Higher dimensional Lie algebroid sigma model with WZ term, Universe 7 (2021), 391, 18 pages, arXiv:2109.02858.
  26. Ikeda N., Momentum section on Courant algebroid and constrained Hamiltonian mechanics, J. Geom. Phys. 170 (2021), 104350, 20 pages, arXiv:2021.10435.
  27. Ikeda N., Strobl T., BV and BFV for the $H$-twisted Poisson sigma model, Ann. Henri Poincaré 22 (2021), 1267-1316, arXiv:1912.13511.
  28. Ikeda N., Xu X., Current algebras from DG symplectic pairs in supergeometry, arXiv:1308.0100.
  29. Ikeda N., Xu X., Canonical functions, differential graded symplectic pairs in supergeometry, and Alexandrov-Kontsevich-Schwartz-Zaboronsky sigma models with boundaries, J. Math. Phys. 55 (2014), 113505, 21 pages, arXiv:1301.4805.
  30. Klimčík C., Strobl T., WZW-Poisson manifolds, J. Geom. Phys. 43 (2002), 341-344, arXiv:math.SG/0104189.
  31. Kosmann-Schwarzbach Y., Poisson and symplectic functions in Lie algebroid theory, in Higher Structures in Geometry and Physics, Progr. Math., Vol. 287, Birkhäuser, New York, 2011, 243-268, arXiv:0711.2043.
  32. Kosmann-Schwarzbach Y., Laurent-Gengoux C., The modular class of a twisted Poisson structure, in Travaux Mathématiques, Fasc. XVI, Trav. Math., Vol. 16, Université du Luxembourg, Luxembourg, 2005, 315-339, arXiv:math.SG/0505663.
  33. Kotov A., Strobl T., Lie algebroids, gauge theories, and compatible geometrical structures, Rev. Math. Phys. 31 (2019), 1950015, 31 pages, arXiv:1603.04490.
  34. Mackenzie K., Lie groupoids and Lie algebroids in differential geometry, Lond. Math. Soc. Lect. Note Ser., Vol. 124, Cambridge University Press, Cambridge, 1987.
  35. Miti A.M., Zambon M., Observables on multisymplectic manifolds and higher Courant algebroids, arXiv:2209.05836.
  36. Park J.-S., Topological open $p$-branes, in Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific Publishing, River Edge, NJ, 2001, 311-384, arXiv:hep-th/0012141.
  37. Roytenberg D., Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys. 61 (2002), 123-137, arXiv:math.QA/0112152.
  38. Roytenberg D., AKSZ-BV formalism and Courant algebroid-induced topological field theories, Lett. Math. Phys. 79 (2007), 143-159, arXiv:hep-th/0608150.
  39. Ševera P., Some title containing the words ''homotopy'' and ''symplectic'', e.g. this one, in Travaux Mathématiques, Fasc. XVI, Trav. Math., Vol. 16, Université du Luxembourg, Luxembourg, 2005, 121-137, arXiv:math.SG/0105080.
  40. Ševera P., Weinstein A., Poisson geometry with a 3-form background, Progr. Theoret. Phys. Suppl. 144 (2001), 145-154, arXiv:math.SG/0107133.
  41. Sheng Y., Zhu C., Higher extensions of Lie algebroids, Commun. Contemp. Math. 19 (2017), 1650034, 41 pages, arXiv:1103.5920.
  42. Terashima Y., On Poisson functions, J. Symplectic Geom. 6 (2008), 1-7.
  43. Vaintrob A.Yu., Lie algebroids and homological vector fields, Russian Math. Surveys 52 (1997), 428-429.
  44. Vysoký J., Global theory of graded manifolds, Rev. Math. Phys. 34 (2022), 2250035, 197 pages, arXiv:2105.02534.
  45. Zambon M., $L_\infty$-algebras and higher analogues of Dirac structures and Courant algebroids, J. Symplectic Geom. 10 (2012), 563-599, arXiv:1003.1004.

Previous article  Next article  Contents of Volume 20 (2024)