|
SIGMA 20 (2024), 025, 19 pages arXiv:2302.08193
https://doi.org/10.3842/SIGMA.2024.025
Compatible $E$-Differential Forms on Lie Algebroids over (Pre-)Multisymplectic Manifolds
Noriaki Ikeda
Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
Received November 13, 2023, in final form March 27, 2024; Published online March 31, 2024
Abstract
We consider higher generalizations of both a (twisted) Poisson structure and the equivariant condition of a momentum map on a symplectic manifold. On a Lie algebroid over a (pre-)symplectic and (pre-)multisymplectic manifold, we introduce a Lie algebroid differential form called a compatible $E$-$n$-form. This differential form satisfies a compatibility condition, which is consistent with both the Lie algebroid structure and the (pre-)(multi)symplectic structure. There are many interesting examples such as a Poisson structure, a twisted Poisson structure and a twisted $R$-Poisson structure for a pre-$n$-plectic manifold. Moreover, momentum maps and momentum sections on symplectic manifolds, homotopy momentum maps and homotopy momentum sections on multisymplectic manifolds have this structure.
Key words: Poisson geometry; Lie algebroid; multisymplectic geometry; higher structures.
pdf (495 kb)
tex (30 kb)
References
- Abad C.A., Crainic M., Representations up to homotopy of Lie algebroids, J. Reine Angew. Math. 663 (2012), 91-126, arXiv:0901.0319.
- Alexandrov M., Schwarz A., Zaboronsky O., Kontsevich M., The geometry of the master equation and topological quantum field theory, Internat. J. Modern Phys. A 12 (1997), 1405-1429, arXiv:hep-th/9502010.
- Bessho T., Heller M.A., Ikeda N., Watamura S., Topological membranes, current algebras and H-flux-R-flux duality based on Courant algebroids, J. High Energy Phys. 2016 (2016), no. 4, 170, 40 pages, arXiv:1511.03425.
- Bi Y., Sheng Y., On higher analogues of Courant algebroids, Sci. China Math. 54 (2011), 437-447, arXiv:1003.1350.
- Blohmann C., Fernandes M.C.B., Weinstein A., Groupoid symmetry and constraints in general relativity, Commun. Contemp. Math. 15 (2013), 1250061, 25 pages, arXiv:1003.2857.
- Blohmann C., Weinstein A., Hamiltonian Lie algebroids, arXiv:1811.11109.
- Bonavolontà G., Poncin N., On the category of Lie $n$-algebroids, J. Geom. Phys. 73 (2013), 70-90, arXiv:1207.3590.
- Bursztyn H., Martinez Alba N., Rubio R., On higher Dirac structures, Int. Math. Res. Not. 2019 (2019), 1503-1542, arXiv:1611.02292.
- Bursztyn H., Radko O., Gauge equivalence of Dirac structures and symplectic groupoids, Ann. Inst. Fourier (Grenoble) 53 (2003), 309-337, arXiv:math.SG/0202099.
- Callies M., Frégier Y., Rogers C.L., Zambon M., Homotopy moment maps, Adv. Math. 303 (2016), 954-1043, arXiv:1304.2051.
- Cariñena J.F., Crampin M., Ibort L.A., On the multisymplectic formalism for first order field theories, Differential Geom. Appl. 1 (1991), 345-374.
- Cattaneo A.S., Schätz F., Introduction to supergeometry, Rev. Math. Phys. 23 (2011), 669-690, arXiv:1011.3401.
- Chatzistavrakidis A., Topological field theories induced by twisted R-Poisson structure in any dimension, J. High Energy Phys. 2021 (2021), no. 9, 045, 37 pages, arXiv:2106.01067.
- Chatzistavrakidis A., Twisted R-Poisson sigma models, Proc. Sci. 406 (2022), PoS(CORFU2021)271, 20 pages, arXiv:2207.03245.
- Crainic M., Fernandes R.L., Lectures on integrability of Lie brackets, in Lectures on Poisson geometry, Geom. Topol. Monogr., Vol. 17, Geometry & Topology Publications, Coventry, 2011, 1-107, arXiv:math.DG/0611259.
- Cueca M., The geometry of graded cotangent bundles, J. Geom. Phys. 161 (2021), 104055, 20 pages, arXiv:1905.13245.
- Cueca M., Schnitzer J., Deformations of Lagrangian $Q$-submanifolds, arXiv:2309.05580.
- Dufour J.-P., Zung N.T., Poisson structures and their normal forms, Prog. Math., Vol. 242, Birkhäuser, Basel, 2005.
- Gotay M.J., Isenberg J., Marsden J.E., Montgomery R., Momentum maps and classical relativistic fields. Part I: Covariant field theory, arXiv:physics/9801019.
- Grützmann M., Strobl T., General Yang-Mills type gauge theories for $p$-form gauge fields: from physics-based ideas to a mathematical framework or from Bianchi identities to twisted Courant algebroids, Int. J. Geom. Methods Mod. Phys. 12 (2015), 1550009, 80 pages, arXiv:1407.6759.
- Hagiwara Y., Nambu-Dirac manifolds, J. Phys. A 35 (2002), 1263-1281.
- Hirota Y., Ikeda N., Homotopy momentum sections on multisymplectic manifolds, J. Geom. Phys. 182 (2022), 104667, 16 pages, arXiv:2110.12305.
- Ikeda N., Lectures on AKSZ sigma models for physicists, in Noncommutative Geometry and Physics. 4, World Scientific Publishing, Hackensack, NJ, 2017, 79-169, arXiv:1204.3714.
- Ikeda N., Momentum sections in Hamiltonian mechanics and sigma models, SIGMA 15 (2019), 076, 16 pages, arXiv:1905.02434.
- Ikeda N., Higher dimensional Lie algebroid sigma model with WZ term, Universe 7 (2021), 391, 18 pages, arXiv:2109.02858.
- Ikeda N., Momentum section on Courant algebroid and constrained Hamiltonian mechanics, J. Geom. Phys. 170 (2021), 104350, 20 pages, arXiv:2021.10435.
- Ikeda N., Strobl T., BV and BFV for the $H$-twisted Poisson sigma model, Ann. Henri Poincaré 22 (2021), 1267-1316, arXiv:1912.13511.
- Ikeda N., Xu X., Current algebras from DG symplectic pairs in supergeometry, arXiv:1308.0100.
- Ikeda N., Xu X., Canonical functions, differential graded symplectic pairs in supergeometry, and Alexandrov-Kontsevich-Schwartz-Zaboronsky sigma models with boundaries, J. Math. Phys. 55 (2014), 113505, 21 pages, arXiv:1301.4805.
- Klimčík C., Strobl T., WZW-Poisson manifolds, J. Geom. Phys. 43 (2002), 341-344, arXiv:math.SG/0104189.
- Kosmann-Schwarzbach Y., Poisson and symplectic functions in Lie algebroid theory, in Higher Structures in Geometry and Physics, Progr. Math., Vol. 287, Birkhäuser, New York, 2011, 243-268, arXiv:0711.2043.
- Kosmann-Schwarzbach Y., Laurent-Gengoux C., The modular class of a twisted Poisson structure, in Travaux Mathématiques, Fasc. XVI, Trav. Math., Vol. 16, Université du Luxembourg, Luxembourg, 2005, 315-339, arXiv:math.SG/0505663.
- Kotov A., Strobl T., Lie algebroids, gauge theories, and compatible geometrical structures, Rev. Math. Phys. 31 (2019), 1950015, 31 pages, arXiv:1603.04490.
- Mackenzie K., Lie groupoids and Lie algebroids in differential geometry, Lond. Math. Soc. Lect. Note Ser., Vol. 124, Cambridge University Press, Cambridge, 1987.
- Miti A.M., Zambon M., Observables on multisymplectic manifolds and higher Courant algebroids, arXiv:2209.05836.
- Park J.-S., Topological open $p$-branes, in Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific Publishing, River Edge, NJ, 2001, 311-384, arXiv:hep-th/0012141.
- Roytenberg D., Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys. 61 (2002), 123-137, arXiv:math.QA/0112152.
- Roytenberg D., AKSZ-BV formalism and Courant algebroid-induced topological field theories, Lett. Math. Phys. 79 (2007), 143-159, arXiv:hep-th/0608150.
- Ševera P., Some title containing the words ''homotopy'' and ''symplectic'', e.g. this one, in Travaux Mathématiques, Fasc. XVI, Trav. Math., Vol. 16, Université du Luxembourg, Luxembourg, 2005, 121-137, arXiv:math.SG/0105080.
- Ševera P., Weinstein A., Poisson geometry with a 3-form background, Progr. Theoret. Phys. Suppl. 144 (2001), 145-154, arXiv:math.SG/0107133.
- Sheng Y., Zhu C., Higher extensions of Lie algebroids, Commun. Contemp. Math. 19 (2017), 1650034, 41 pages, arXiv:1103.5920.
- Terashima Y., On Poisson functions, J. Symplectic Geom. 6 (2008), 1-7.
- Vaintrob A.Yu., Lie algebroids and homological vector fields, Russian Math. Surveys 52 (1997), 428-429.
- Vysoký J., Global theory of graded manifolds, Rev. Math. Phys. 34 (2022), 2250035, 197 pages, arXiv:2105.02534.
- Zambon M., $L_\infty$-algebras and higher analogues of Dirac structures and Courant algebroids, J. Symplectic Geom. 10 (2012), 563-599, arXiv:1003.1004.
|
|