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Abstract. Consider the pairs (f,G) with f = f(x1, . . . , xN ) being a polynomial defining
a quasihomogeneous singularity and G being a subgroup of SL(N,C), preserving f . In par-
ticular, G is not necessary abelian. Assume further that G contains the grading operator jf
and f satisfies the Calabi–Yau condition. We prove that the nonvanishing bigraded pieces
of the B-model state space of (f,G) form a diamond. We identify its topmost, bottommost,
leftmost and rightmost entries as one-dimensional and show that this diamond enjoys the
essential horizontal and vertical isomorphisms.

Key words: singularity theory; Landau–Ginzburg orbifolds

2020 Mathematics Subject Classification: 32S05; 14J33

1 Introduction

Let a polynomial f ∈ C[x1, . . . , xN ] be quasihomogeneous with respect to some positive inte-
gers d0, d1, . . . , dN , i.e.,

f
(
λd1x1, . . . , λ

dNxN
)
= λd0f(x1, . . . , xN ), ∀λ ∈ C∗.

Assume also that x1 = · · · = xN = 0 is the only critical point of f and d1, . . . , dN have no common
factor. Then the zero set f(x1, . . . , xN ) = 0 defines a degree d0 quasismooth hypersurface Xf

in P(d1, . . . , dN ). Such hypersurfaces became of great interest in the early 90’s in the context
of mirror symmetry (cf. [7, 8]). In particular, if the Calabi–Yau condition d0 =

∑N
k=1 dk holds,

then the first Chern class of Xf vanishes and, hence, its canonical bundle is trivial meaning
that Xf is a Calabi–Yau variety.

The polynomials f above define the so-called quasihomogeneous singularities and can be
studied from the point of view of singularity theory. The varieties Xf at the same time are
the objects of Kähler geometry. To relate the singularity theory properties of f to the Kähler
geometry properties of Xf is an important problem. This problem is in particular interesting in
the context of mirror symmetry.

1.1 Hodge diamonds of Calabi–Yau manifolds

The state space of a Calabi–Yau manifolds X is the cohomology ring H∗(X). This cohomology
ring is naturally bigraded building up a Hodge diamond of size D := dimCX. In particular the
following properties hold:
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(1) H∗(X) =
⊕

p,q∈ZH
p,q(X),

(2) dimHp,q(X) = 0 if p < 0 or q < 0 or p > D or q > D,

(3) dimH0,0(X) = dimHD,D(X) = 1,

(4) dimHD,0(X) = dimH0,D(X) = 1,

(5) there is a “horizontal” vector space isomorphism Hp,q(X) ∼= Hq,p(X),

(6) there is a “vertical” vector space isomorphism Hp,q(X) ∼=
(
HD−q,D−p(X)

)∨
, where (−)∨

stands for the dual vector space

In physics, this bigrading is coming from considering Calabi–Yau B-model associated to X
and A-model bigrading is obtained from it by the so-called rotation of the diamond by 90◦. On
the level of state spaces the mirror symmetry map is an isomorphism of the cohomology vector
spaces for a dual pair of Calabi–Yau manifolds switching A- and B-model bigradings.

More, generally if considering Calabi–Yau orbifolds in place of quasismooth varieties, one
replaces the ordinary cohomology ring by the Chen–Ruan cohomology ring H∗

orb. This is an
essential question if H∗

orb forms a Hodge diamond too. Some of the Hodge diamond properties
above follow directly from the definitions or could be verified in the similar way to our main
Theorem 1.1 below, while the others (like the property (4)) were not investigated in literature
up to our knowledge and do not look to be straightforward.

1.2 Landau–Ginzburg orbifolds

Another facet of mirror symmetry is given by matching the so-called Landau–Ginzburg orbifolds
in place of Calabi–Yau manifolds or orbifolds (cf. [17, 22, 29, 30, 31]). Mathematically, these
are the pairs (f,G) with f being a quasihomogeneous polynomial with the only critical point
0 ∈ CN and G being a group of symmetries of f .

Consider the maximal group of linear symmetries of f

GLf := {g ∈ GL(N,C) | f(g · x) = f(x)} .

It is nontrivial because it contains a nontrivial subgroup J generated by jf

jf · (x1, . . . , xN ) :=
(
e2π

√
−1d1/d0x1, . . . , e

2π
√
−1dN/d0xN

)
.

Also important is the group SLf := GLf ∩ SL(N,C) consisting of GLf elements preserving the
volume form of CN .

For any G ⊆ GLf , the pair (f,G) is called a Landau–Ginzburg orbifold. One associates to it
the state space, which is the G-equivariant generalization of a Jacobian ring of f , together with
A- and B- model bigradings, which again differ by 90◦-rotation from one another provided G acts
by transformations with determinant 1. Since these are interdependent, within this paper we
will focus on just the B-model, as it has clearer geometric interpretation, much alike bigrading on
the cohomology of Calabi–Yau manifold. For this reason, we will call this state space endowed
with B-model bigrading by B(f,G).

Up till now, Landau–Ginzburg orbifolds were mostly investigated for the groups G acting
diagonally on CN and also for f belonging to a very special class of polynomials – the so-called
invertible polynomials (cf. [4, 5, 6, 14, 19, 20, 21]). Also some work was done for the symmetry
groups G = S ⋉Gd with Gd acting diagonally and S ⊆ SN – a subgroup of a symmetric group
on N elements [2, 3, 10, 11, 12, 18, 24, 27, 32]. We relax both conditions in this paper.

Once again, the mirror symmetry attempts to match A- and B-state spaces for dual pairs
of Landau–Ginzburg orbifolds. It should be mentioned, that the state space enjoys several
other structures besides being just bigraded vector space, like multiplication or bilinear form on
both A- and B-sides, which should also be compatible with the mirror map. They will not be
considered in the present paper.
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1.3 Calabi–Yau/Landau–Ginzburg correspondence

The final piece of matching comes from Calabi–Yau/Landau–Ginzburg correspondence, which re-
lates respective A-models and their state spaces coming from Calabi–Yau and Landau–Ginzburg
geometries of (Xf , G/J) and (f,G) provided J ⊆ G. Mathematically, up till now this was proved
for diagonal symmetry groups by Chiodo and Ruan [9, Theorem 14] and in some special cases
with N = 5 in [25].

However, if this correspondence holds, the vector space B(f,G) is also expected to form a di-
amond. Namely, it should satisfy the properties (1)–(6) above. Formulated in terms of B(f,G)
this becomes a purely singularity theoretic question. It is the main topic of our paper.

Theorem 1.1. Let f ∈ C[x1, . . . , xN ] be a quasihomogeneous polynomial satisfying Calabi–Yau
condition and defining an isolated singularity. Then for any G ⊆ SLf , such that J ⊆ G the state
space B(f,G) forms a diamond of size N−2 in a sense that it satisfies conditions (1)–(6) above.

Proof. The proof is summed up in Propositions 5.2, 5.3 and 5.4. The vertical and horizontal
isomorphism are given in Section 4. ■

2 Preliminaries and notations

2.1 Quasihomogeneous singularities

The polynomial f ∈ C[x1, . . . , xN ] is called quasihomogeneous if there are positive integers
d0, d1, . . . , dN , such that

f
(
λd1x1, . . . , λ

dNxN
)
= λd0f(x1, . . . , xN ), ∀λ ∈ C. (2.1)

In what follows we will say that f is quasihomogeneous with respect to the weights d0, d1, . . . , dN
or the reduced weights q1 := d1/d0, . . . , qN := dN/d0.

We will say that f defines an isolated singularity at 0 ∈ CN if 0 is the only critical point
of f . According to K. Saito [28, Satz 1.3] one may consider without changing the singularity
only the quasihomogeneous polynomials, such that 0 < qk ≤ 1/2 for all k = 1, . . . , N . Moreover,
we may assume that all variable xk with qk = 1/2 enter f only in monomial x2k, in particular,
there are no monomials of the form xixj with i ̸= j. Then the number of its monomials is not
less than N , the number of variables.

Example 2.1. Fermat, chain and loop type polynomials are examples of quasihomogeneous
singularities for any natural ai ≥ 2

f = xa11 Fermat type,

f = xa11 + x1x
a2
2 + · · ·+ xN−1x

aN
N chain type,

f = xa11 x2 + xa22 x3 + · · ·+ x
aN−1

N−1 xN + xaNN x1 loop type.

Using the word ‘type’, we mean the certain structure of the monomials without specifying the
exponents ai.

It’s easy to see that for Fermat, chain and loop type polynomials, the reduced weights
q1, . . . , qN are defined in a unique way. This is also true for any quasihomogeneous singularity
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that we assume (cf. [28, Korollar 1.7]). We have

q1 =
1

a1
Fermat type,

qi =
N∑
j=i

(−1)j−i

a1 · · · aj
chain type,

qi = (−1)N−1 1− ai + ai
∑N−1

k=2 (−1)k
∏k

l=2 ai−l+1∏N
k=1 ak − (−1)N

loop type,

where one assumes a0 := aN , a−1 := aN−1, a−2 := aN−2 and so on.
Given f ∈ C[x1, . . . , xN ] and g ∈ C[y1, . . . , yM ] both defining quasihomogeneous singulari-

ties it follows immediately that f + g ∈ C[x1, . . . , xN , y1, . . . , yM ] defines a quasihomogeneous
singularity too. We will denote such a sum by f ⊕ g.

Example 2.2 ([1, Section 13.1]). If N ≤ 2, then all quasihomogeneous isolated singularities are
given by the ⊕-sums of the Fermat, chain or loop type polynomials.

Example 2.3 ([1, Section 13.2]). If N = 3, then all quasihomogeneous isolated singularities
are given by the following polynomials fI = xa11 + xa22 + xa33 , fII = xa11 + xa22 x3 + xa33 , fIII =
xa11 + xa22 x1 + xa33 x1 + εxp2x

q
3, fIV = xa11 + xa22 x3 + xa33 x2, fV = xa11 + xa22 x1 + xa33 x2, fVI =

xa11 x2 + xa22 x1 + xa33 x1 + εxp2x
q
3, fVII = xa11 x2 + xa22 x3 + xa33 x1 with some positive a1, a2, a3.

The numbers ai are arbitrary for fI, fII, fIV, fV, fVII, however the polynomials fIII and fVI

are only quasihomogeneous if ε ̸= 0 and some additional combinatorial condition on a1, a2, a3
holds. In particular the least common divisor of (a2, a3) should be divisible by a1 − 1 for fIII
to exist. Allowed values of ε depend quiet heavily on ai. In particular ε ̸∈ {0,

√
−1,−

√
−1} for

f = x31 + x1x
2
2 + x1x

2
3 + εx1x

2
2 to define an isolated singularity.

2.2 Graph of a quasihomogeneous singularity

Let f ∈ C[x1, . . . , xN ] define an isolated singularity. Then for every index j ≤ N the polynomial
f has either the summand xaj or a summand xajxk for some exponent a ≥ 2 and index k ≤ N
(cf. [28, Korollar 1.6] and [16, Theorem 2.2]). Construct a map κ : {1, . . . , N} → {1, . . . , N}.
Set κ(j) := j in the first case above and κ(j) := k in the second.

Following [16, Section 3] associate to f the graph1 Γf with N vertices labelled with the
numbers 1, . . . , N and the oriented arrows j → κ(j) if j ̸= κ(j). In other words, the vertices
correspond to the variables xi and the arrows to the monomials xajxk.

Example 2.4. The graphs of theN = 3 quasihomogeneous singularities are all listed in Figure 1.

Call a tree oriented if its root has only incoming edges adjacent to it and any other vertex has
exactly one outgoing edge and several incoming edges adjacent to it. The following proposition
is immediate.

Proposition 2.5 (cf. [16, Lemma 3.1]). Any graph Γf is a disjoint union of the graphs of the
following two types

(1) oriented tree,

(2) oriented circle with the oriented trees having the roots on this oriented circle.

In what follows we consider the root of the type (1) graph above as a cycle with one vertex.
This merges the two types above.

1Such graphs were first considered by Arnold, however with the self-pointing arrows j → j too. We decide to
remove such arrows to reduce complexity.
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•1 •1 •2 •2

•2 •3 •2 •3 •1 •3 •1 •3

•3 •3 •1

•1 •2 •1 •2 •2 •3

Figure 1. Graphs of N = 3 quasihomogenous singularities (see Example 2.3).

It’s easy to see that Γf⊕g = Γf ⊔ Γg, but it is not true that f decomposes into the ⊕-sum
if Γf has more than one component. For example the graph of f = x31+x32+x33+x1x2x3 is just
the disjoint union of three vertices without any edges.

2.3 Graph decomposition of a polynomial

Assume we only know the graph Γf and not the polynomial f itself. The graph structure
indicates some monomials that are the summands of f . Call these monomials graph monomials.
In particular, f has only graph monomials if it is of Fermat, chain or loop type or a ⊕-sum of
them.

Let f be such that Γf has only one connected component. Then Γf has one oriented circle,
and p oriented trees with the roots on this circle. We have the decomposition

f = f0 + f1 + · · ·+ fp + fadd, (2.2)

with

(1) f0, f1, . . . , fp, fadd ∈ C[x1, . . . , xN ],

(2) f0 having as the summands only those graph monomials of f , that build up the oriented
circle or the common root,

(3) fk having as the summands only those graph monomials of f , that build up the k-th
oriented tree,

(4) fadd := f − f0 − f1 − · · · − fp having as the summands all the non-graph monomials of f .

This decomposition extends easily to the case of Γf having several components. Note that we
could have had p = 0, but it should always hold that f0 ̸= 0.

Writing the decomposition above we had to order the trees by the index of fi. This ordering
is not important in what follows.

Example 2.6. The polynomial f = x31 + x1
(
x22 + x23 + x24

)
+ ϵx2x3x4 with ε ∈ C\

{
0,±2

√
−1

}
defines an isolated singularity. It’s also quasihomogeneous with q1 = · · · = q4 = 1/3. We have
p = 3,

f0 = x31, f1 = x1x
2
2, f2 = x1x

2
3, f3 = x1x

2
4, fadd = εx2x3x4.
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• • •
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Figure 2. Connected component of Γf (see Proposition 2.5).

2.4 Graph exponents matrix

Let f define a quasihomogeneous singularity. We introduce the matrix Ef with the entries
in Z≥0. It follows from Proposition 2.5 that f has exactly N graph monomials. Let every row
of Ef correspond to a graph monomial. The components of this row will be (α1, . . . , αN ) if and
only if the corresponding graph monomial is ε · xα1

1 · · ·xαN
N for some ε ∈ C∗.

The matrix Ef is only defined up to a permutation of the rows. We will call it graph exponents
matrix.

Let Eij denote the components of Ef . Then for some non-zero constants ck we have

f − fadd =
N∑
k=1

ckx
Ek1
1 · · ·xEkN

N . (2.3)

Remark 2.7. Such a matrix was previously defined in the literature only for the invertible
polynomials (see Section 2.5). We consider it here in a wider context.

Example 2.8. The matrices Ef of the Example 2.3 are

EfI =

a1 0 0
0 a2 0
0 0 a3

 , EfII =

a1 0 0
0 a2 1
0 0 a3

 , EfIII =

a1 0 0
1 a2 0
1 0 a3

 ,

EfIV =

a1 0 0
0 a2 1
1 0 a3

 , EfV =

a1 0 0
1 a2 0
0 1 a3

 , EfVI
=

a1 1 0
1 a2 0
1 0 a3

 ,
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EfVII
=

a1 1 0
0 a2 1
1 0 a3

 .

The graph exponents matrices of loop and chain type polynomials read

Eloop =


a1 1 . . . 0 0
0 a2 1 . . . 0
...

. . .
. . . 0

0 0 . . . aN−1 1
1 0 0 . . . aN

 , Echain =


a1 0 . . . 0 0
1 a2 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 aN−1 0
0 0 . . . 1 aN

 . (2.4)

In general, by Proposition 2.5 if Γf has only one connected component, the matrix Ef after
some renumbering of the variables and the rows has the block form. The diagonal blocks
are several chain type exponent matrices and exactly one loop type exponents matrix as in
equation (2.4), such that for every chain type block there is exactly one additional matrix
entry 1 in the first row of this block and the column of a loop type block. All the other matrix
entries except listed vanish,

Ef =


A0 0 0 0

Ui1j1 A1 0 0
...

. . . 0

Uipjp 0 0 Ap

 , (2.5)

where A0 is a loop type polynomial exponents matrix and A1, . . . , Ap are chain type polynomial
exponent matrices, the matrix Uij is the rectangular matrix with 1 at position (i, j) and all other
entries 0.

Assuming the decomposition of equation (2.2), the matrix A0 is exactly the exponent matrix
of f0 and the matrices A1, . . . , Ap are defined by f1, . . . , fp.

Proposition 2.9. Let f define a quasihomogeneous singularity. Then

(i) the matrix Ef is invertible,

(ii) there is a canonical choice of the integer weights (d0, d1, . . . , dN ).

Proof. Let f be quasihomogeneous with the reduced weights (q1, . . . , qN ). We show first that
these weights are defined uniquely by the graph monomials of f .

Let f be decomposed as in equation (2.2). Then f0 is of Fermat or loop type and the weights
of its variables are defined uniquely. Similarly for any fk with k = 1, . . . , p corresponding to
the tree with the root on the oriented circle, the weight of the root’s variable is defined by the
quasihomogeneity of f0, going up the tree of deduces uniquely the weight of every variable of fk
corresponding to the consequent vertex.

Introduce two ZN vectors: q := (q1, . . . , qN )T and 1 := (1, . . . , 1)T. Then the quasihomo-
geneity condition on f is equivalent to the QN vector equality Ef · q = 1. It follows now from
Cramer rule that det(Ef ) ̸= 0 because this equation has a unique solution. This completes (i).

The canonical weight set is obtained by taking df := det(Ef ) and solving Ef · d = df1
for d := (d1, . . . , dN )T. ■

2.5 Invertible polynomials

The set of all quasihomogeneous singularities contains the following important class. The poly-
nomial f defining an isolated quasihomogeneous singularity having no monomial of the form xixj
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with i ̸= j and as many monomials as the variables is called invertible polynomial and is said to
define an invertible singularity.

The following statement can be assumed as a well-known (cf. [23]), we add up the proof for
completeness.

Proposition 2.10. Let f be an invertible polynomial. Then after some rescaling and renum-
bering of the variables we have f = f (1) ⊕ · · · ⊕ f (n) for f (k) being either of Fermat, chain or
loop type.

Proof. Assume Γf to contain a vertex with two incoming arrows. Then f is of the form

α1x
a
i x

K
l + α2x

b
jxi + α3x

c
kxi + g(x),

where K ∈ {0, 1}, α1α2α3 ̸= 0, b, c ≥ 2 and g does not depend on xk, xi, xj . Computing

∂f

∂xi
= aα1x

a−1
i xKl + α2x

b
j + α3x

c
k,

∂f

∂xj
= bα2x

b−1
j xi,

∂f

∂xk
= aα3x

c−1
k xi.

Setting xi = 0, we see that vanishing ∂f
∂xi

= ∂f
∂xj

= ∂f
∂xk

= 0 is equivalent to α2x
b
j + α3x

c
k = 0

what shows that xi = xj = xk = 0 is not an isolated critical point of f . ■

The graphs of invertible singularities are disjoint unions of isolated vertices (Fermat types),
oriented cycles (loop types) and one branch trees (chain types).

In the notation of Section 2.3, the graph decomposition equation (2.2) of Fermat, loop and
chain type polynomials is the following. We have always fadd = 0, p = 0 and f0 = f for Fermat
and loop types, but p = 1 and f0 + f1 = f for chain type with f0 = xamm .

Example 2.11. The quasihomogeneous singularities with N = 2 are all invertible. The quasi-
homogeneous singularities with N = 3 are not all invertible. In the notation of Example 2.3, we
have fI – Fermat⊕Fermat⊕Fermat, fII – Fermat⊕chain, fIII – not invertible, fIV – Fermat⊕loop,
fV – chain, fVI – not invertible, fVII – loop.

3 Symmetries

Given a quasihomogeneous polynomial f = f(x1, . . . , xN ) consider the maximal group of linear
symmetries of f defined by

GLf := {g ∈ GL(N,C) | f(g · x) = f(x)}.

Lemma 3.1. Under our assumptions on f any g ∈ GLf necessarily preserves the weights of the
variables, i.e., maps each xi to a linear combination of xj with the same weight.

Proof. The action of g preserves the homogeneous components of f . In particular, the variables
in the quadratic terms of f map to linear combinations of variables in the quadratic terms of f
and hence weight 1/2 subspace is preserved by f .

We may now assume that f has no quadratic terms. In this case, the argument of [26,
Theorem 2.1] applies verbatim to the quasihomogeneous situation to prove that GLf is finite.
Let

G̃Lf = {g ∈ GL(N,C) | f(g · x) = χ(g)f(x), χ(g) ∈ C∗}.

The map χ : G̃Lf → C∗ is a character and GLf is precisely the kernel of χ, in particular, it
is a normal subgroup. Moreover, the condition (2.1) provides an inclusion t : C∗ ↪→ G̃Lf , such
that χ ◦ t is a degree d0 > 0 map. The action by conjugation of connected subgroup t(C∗) on
the finite subgroup GLf is necessary trivial, which means that GLf commute with t(C∗). This
means that GLf preserves the eigenspaces of t(C∗) as desired. ■
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Remark 3.2. Notably, the observation of this Lemma seems to be unknown to previous authors
(for example, it was imposed as condition in [25] and some subsequent works).

Let Gd
f ⊆ GLf be the maximal group of diagonal symmetries of f . This is the group of all

diagonal elements of GL(N,C) belonging to GLf .
We have

Gd
f
∼=

{
(λ1, . . . , λN ) ∈ (C∗)N | f(λ1x1, . . . , λNxN ) = f(x1, . . . , xN )

}
.

It’s obvious that

Gd
f ′⊕f ′′ ∼= Gd

f ′ ×Gd
f ′′ . (3.1)

Note, however, that the same does not necessarily hold for GLf ′⊕f ′′ .
In what follows we will use the notation

e [α] := exp
(
2π

√
−1α

)
, α ∈ R.

Each element g ∈ Gd
f has a unique expression of the form

g = diag
(
e
[α1

r

]
, . . . , e

[αN

r

])
with 0 ≤ αi < r, αi ∈ N,

where r is the order of g. We adopt the additive notation

g = (α1/r, . . . , αN/r) or g =
1

r
(α1, . . . , αN )

for such an element g.

Example 3.3. For f = xa11 we have GLf = Gd
f = ⟨g⟩ with g ∈ C∗ acting by g(x1) = e

[
1
a1

]
· x1.

Its order is a1 and in the additive notation we have g = (1/a1), giving us GLf
∼= Z/a1Z.

Example 3.4. For f = xa11 x2 + xa22 we have Gd
f = ⟨g1, g2⟩ with g1 · (x1, x2) = (e[ 1

a1
]x1, x2)

and g2 · (x1, x2) =
(
e[ 1

a2
(1− 1

a1
)]x1, e

[
1
a2

]
x2

)
. In the additive notation g1 = (1/a1, 0) and g2 =

((a1 − 1)/(a1a2), 1/a2). In this example GLf = Gd
f because q1 ̸= q2.

Let (q1, . . . , qN ) be the reduced weight set of f . Then we have

jf := (e[q1], . . . , e[qN ]) ∈ Gd
f .

In particular, it follows that Gd
f and GLf are not empty whenever f is quasihomogeneous.

Denote by J the group generated by jf :

J := ⟨jf ⟩ ⊆ Gd
f .

Since g ∈ GLf preserves the weights we see that jf commutes with g. In other words J is the
central subgroup of GLf .

3.1 Fixed loci of the GLf elements

For each g ∈ GLf , denote by Fix(g) the fixed locus of g

Fix(g) :=
{
(x1, . . . , xN ) ∈ CN | g · (x1, . . . , xN ) = (x1, . . . , xN )

}
.

This is an eigenvalue 1 subspace of CN and therefore a linear subspace of CN . By Ng :=
dimC Fix(g) denote its dimension and by fg := f |Fix(g) the restriction of f to the fixed locus
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of g. For g ∈ Gd
f , this linear subspace is furthermore a span of a collection of standard basis

vectors.

For each h ∈ Gd
f , let Ih := {i1, . . . , iNh

} be a subset of {1, . . . , N} such that

Fix(h) =
{
(x1, . . . , xN ) ∈ CN | xj = 0, j /∈ Ih

}
.

In the other words, Fix(h) is indexed by Ih. In particular, Iid = {1, . . . , N}.
More generally, for g ∈ GLf , since g preserves the weight subspaces of CN , the weights of the

subspace Fix(g) are well-defined and are the subset of {q1, . . . , qN}. Fix a subset Ig ⊂ {1, . . . , N}
such that qk with k ∈ Ig are exactly all the weights of Fix(g), so that, in particular, we
have |Ig| = Ng. Note that if g ̸∈ Gd

f there is no canonical choice for Ig, but the choice made at
this step will not impact our results.

Denote by Ich the complement of Ih in Iid and set dh := N −Nh, the codimension of Fix(h).

Proposition 3.5. For any diagonalizable g ∈ GLf with Ng > 0 there is a choice of coordinates
on Fix(g) linear in xi, such that the polynomial fg also defines a quasihomogeneous singularity.

Proof. Let x̃1, . . . , x̃N be the coordinates of CN dual to the basis diagonalizing g. In this
coordinates the polynomial fg is obtained by setting some of x̃• to zero. The proof follows now
by the same argument as in [13, Proposition 5]. ■

Example 3.6. If f is of Fermat or loop type, then any g ∈ GLd
f , such that g ̸= id satisfies

Fix(g) = 0. If f = xa11 + x1x
a2
2 + · · · + xN−1x

aN
N is of chain type, then any g ∈ GLd

f , such that

g ̸= id satisfies Fix(g) =
{
(x1, . . . , xp, 0, . . . , 0) ∈ CN | xk ∈ C

}
for some p depending on g. The

polynomial fg is of chain type again: fg = xa11 + x1x
a2
2 + · · ·+ xp−1x

ap
p .

Denote also

SLf := GLf ∩ SL(N,C).

This group will be important later on because it preserves the volume form of CN .

3.2 Age of a GLf element

For g ∈ GLf let λ1, . . . , λN be the collection of its eigenvalues. Let 0 ≤ αi < 1 be such that
λi = e[αi], then age of g is defined as the number

age(g) :=
N∑
k=1

αk.

The following properties are clear but will be important in what follows.

Proposition 3.7.

(1) For any g ∈ GLf we have

age(g) + age
(
g−1

)
= N −Ng = dg. (3.2)

(2) For a diagonalizable g ∈ GLf we have age(g) = 0 if and only if g = id.

(3) We have g ∈ SLf if and only if age(g) ∈ N.
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3.3 Diagonal symmetries and a graph Γf

Proposition 3.8. Let Γf be a graph of a quasihomogeneous singularity f and g ∈ GLf . Then
if g acts nontrivially on xk, then it acts nontrivially on all xi, such that there is an oriented
path from i-th to the k-th vertex.

Proof. We first show the statement for the arrows pointing at k. Having an arrow j → k means
that f has a monomial x

aj
j xk as a summand with a nonzero coefficient. We have g · xk ̸= xk

and therefore the summand can only be preserved under the action of g if g · xj ̸= xj . Having
an oriented path i → j1 → · · · → jn → k we have by using the previous step that g · xjn ̸= xjn
and then g · xja ̸= xja for all a. Hence, for xi too. ■

Let Ef be the graph exponents matrix of f . Consider

Ggr
f :=

{
(λ1, . . . , λN ) ∈ (C∗)N

∣∣∣∣∣
N∏
j=1

λ
E1j

j = · · · =
N∏
j=1

λ
ENj

j = 1

}

with Eij being the components of Ef . The group Ggr
f is exactly the maximal group of diagonal

symmetries of the difference f − fadd. In particular, every element of Ggr
f preserves all graph

monomials of f .
We have Gd

f ⊆ Ggr
f and hence Gd

f is a finite group. An element g = 1
r (α1, . . . , αN ) belonging

to Ggr
f satisfies Ef · g ∈ ZN . This gives yet another characterization of the group Ggr

f

Ggr
f

∼=
{
g ∈ (Q/Z)N | Ef · g ∈ ZN

}
= E−1

f ZN/ZN .

It follows that every vector g giving a Ggr
f -element is a linear combination with integer

coefficients of the columns of E−1
f . Following the notation of Krawitz [21] define ρi as the i-th

column of E−1
f

E−1
f = (ρ1| . . . |ρN ).

Denote also ρi := e[ρi] ∈ Gd
f .

The elements ρk generate Ggr
f and jf = ρ1 · · · ρN . The columns of Ef generate all relations

on ρ1, . . . , ρN .
In particular, for (E1k, . . . , ENk)

T being a k-th column of Ef we have in Ggr
f

ρE1k
1 · · · ρENk

N = id,

and all other relations among {ρk}Nk=1 follow from those written above.

3.4 Diagonal symmetries of an invertible singularity

In [14] for an invertible f , the authors gave the set Sf of all N -tuples (s1, . . . , sN ) such that
every g ∈ Gd

f \{id} is written uniquely by

g =
∏
k∈Icg

ρskk ,

and sk = 0 if and only if k ∈ Ig. Due to equation (3.1) and Proposition 2.10, it is enough to
construct such set for Fermat, loop or chain type polynomials.

Proposition 3.9. For f being of Fermat, chain or loop type the set Sf consists of all s =
(s1, . . . , sN ), such that
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� (Fermat type): 1 ≤ s1 ≤ a1 − 1

� (loop type): 1 ≤ sk ≤ ak and

s ̸= (a1, 1, a3, 1, . . . , aN−1, 1), s ̸= (1, a2, 1, a4, 1, . . . , aN )

if N is even.

� (chain type): s is of the form

(0, . . . , 0, sp, sp+1, . . . , sN ), with {1, . . . , p− 1} = Ig,

with 1 ≤ sp ≤ ap − 1, 1 ≤ sk ≤ ak for k > p.

Corollary 3.10. In the additive notation for the column sT = (s1, . . . , sN )T, we have g = E−1
f sT.

3.5 Diagonal symmetries of a quasihomogeneous singularity

For any quasihomogeneous singularity f , consider its graph decomposition as in equation (2.2).
Up to the renumbering and rescaling of the variables, we have

f0 = xa11 or f0 = xa11 x2 + · · ·+ xaKK x1,

f1 = x1x
b1
K+1 + xK+1x

b2
K+2 + · · ·+ xK+L−1x

bL
K+L

with the similar expression for f2, . . . , fp.
Any nontrivial g ∈ Gd

f0
extends to an element g̃ ∈ Ggr

f . Moreover it follows that Fix(g) = 0
and also Fix(g̃) = 0 as long as g ̸= id. Similarly any element h ∈ Ggr

f with Fix(h) = 0 acts
nontrivially on x1, . . . , xK preserving f0. Hence it defines h0 ∈ Gd

f0
by the restriction.

At the same time any h ∈ (C∗)L acting diagonally on (xK+1, . . . , xK+L) preserving f1 extends
to an element of Ggr

f assuming it to act trivially on f0 and all other f2, . . . , fp. One notes
immediately that such elements h are the elements of chain type polynomial symmetry group.
Denote the group of all such elements by G◦

f1
.

We construct the groups G◦
f2
, . . . , G◦

fp
in a similar way.

For a nontrivial element g ∈ Ggr
f and its restriction g0 ∈ Gd

f0
, the extension g̃0 is not unique.

However, having it fixed, we have by Proposition 3.8 that there is a unique set of gk ∈ G◦
fk

for
k = 1, . . . , p, s.t.

g = g̃0 · g1 · · · gp,

We have that every gk acts non-trivially only on the variables of fk preserving all the variables
of f0 identically.

We have

|Ggr
f | = |Gd

f0 | · |G
gr
f1
| · · · |Ggr

fp
|.

Associate to every g0, g1, . . . , gp an element s0, s1, . . . , sp as in Proposition 3.9. Composing them
in one column s, we have

g = E−1
f sT.

Note that for s0 ̸= 0 and s1 = 0, . . . , sp = 0, all components of g are nonzero. We follow the
convention s1 ̸= 0, . . . , sp ̸= 0 if g is such that g0 ̸= id.

The following proposition is very important in what follows.

Proposition 3.11. For any g ∈ Gd
f such that g = E−1

f s, we have

age(g) = (1, . . . , 1)E−1
f sT.

Proof. We need to show that the components of g belong to [0, 1). This follows immediately
from the equality Efg = s, the bounds on s and the special form of the matrix Ef (see equa-
tion (2.5)). ■
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3.6 Symmetries and the Calabi–Yau condition

Let the reduced weight set q1, . . . , qN of f satisfy
∑N

k=1 qk = 1. This equality is called the
Calabi–Yau condition and we will say that f satisfies the CY condition. We show in this section
that it puts significant restrictions on the symmetries of f .

Let the matrix ET
f define a polynomial fT. Namely, if for f we have (2.3), then

fT :=

N∑
k=1

ckx
E1k
1 · · ·xENk

N .

This polynomial does not necessarily define an isolated singularity. However, it is quasihomoge-
neous again with some weights qT1 , . . . , q

T
N by the same argument as in Proposition 2.9.

We call f star-shaped if its graph Γf consists of N − 1 vertices all adjacent to one vertex.
Namely, f0 = xa11 , p = N − 1 and fi = x1x

bi+1

i+1 . Such a polynomial satisfies the CY condition if
and only if

N∑
i=2

1

bi
= 1.

Example of such a polynomial is given by

f = xa11 + x1
(
x32 + x33 + x34

)
+ x22x

2
3 + x22x

2
4 + x23x

2
4

with the Milnor number 81.

We will treat the star-shaped polynomials separately.

Proposition 3.12. Let f not being a star-shaped polynomial, satisfy the CY condition. Then
the weights qT1 , . . . , q

T
N are all positive.

Proof. This lemma is obvious for invertible polynomial f and we assume only noninvertible
cases in the proof.

Let Ef be written as in equation (2.5) and A0 be aK×K loop type matrix as in equation (2.4).
It is immediate that qTK+1, . . . , q

T
N are positive.

For i = 1, . . . ,K, denote by Ai the sum of all qTj with j > K, s.t. j-vertex of Γf is adjacent
to the i-th vertex.

Lemma 3.13. We have 0 ≤ Ai < 1 for any 1 ≤ i ≤ K.

Proof. Ai is non-negative as the sum of the positive weights. However this sum can be empty.

Let Ai ≥ 1 for some i. Let the vertices adjacent to the i-th vertex be labelled by K +
1, . . . ,K +m contributing to f with the monomials xix

bK+1

K+1 , . . . , xix
bK+m

K+m . Then

qK+j =
1

bK+j
(1− qi) and qTK+j ≤

1

bK+j
.

Denote S :=
∑m

j=1

1

bK+j
. If the CY condition holds, then

qi + S − qiS ≤ 1 ⇔ (S − 1) ≤ qi(S − 1).

If S > 1, this gives qi ≥ 1 which contradicts the quasihomogeneity condition of f . If S = 1,
then qK+1 + · · ·+ qK+m = 1− qi and the CY condition can only hold if f is a star-shaped CY
polynomial. ■
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Let us show that qT1 is positive. The proof for qT2 , . . . , q
T
N is similar.

Let cij stand for the components of the K ×K matrix A−1
0 . Note that up to a sign these are

just the products of ai divided by detA = a1 · · · aK + (−1)K−1. In particular, we have

ci,i =
a1 · · · aK
ai detA

, ci,i+r = (−1)r
a1 · · · aK

ai · · · ai+r detA
, 1 ≤ r ≤ K − i,

ci,i−1 = (−1)K−1 1

detA
, ci,i−r = (−1)K−r ai−r+1 · · · ai−1

detA
, 1 ≤ r ≤ i− 1.

Then

qTi = c1i + · · ·+ cKi − c1iA1 − · · · − cKiAK

for 1 ≤ i ≤ K and

N∑
i=1

qi ≥
K∑
i=1

qi +

K∑
i=1

Ai(1− qi) =

K∑
i,j=1

cij +

K∑
i=1

Ai(1− ci1 − · · · − ciK).

Under the CY condition we have

K∑
i,j=1

cij +
K∑
i=2

Ai(1− ci1 − · · · − ciK)− 1 ≤ −A1(1− c11 − · · · − c1K).

The bracket on the right hand side is positive because q1 < 1. This gives the estimate

−c11A1 ≥
c11

1− c11 − · · · − c1K

 K∑
i,j=1

cij − 1 +

K∑
i=2

Ai(1− ci1 − · · · − ciK)


because c11 is positive. We get then the estimate

qT1 ≥ c11 + · · ·+ cK1 +
c11

1− c11 − · · · − c1K

 K∑
i,j=1

cij − 1


+

K∑
i=2

Ai

(
−ci1 + c11

1− ci1 − · · · − ciK
1− c11 − · · · − c1K

)

=
(c11 + · · ·+ cK1)(1− c11 − · · · − c1K) + c11

(∑K
ij=1 cij − 1

)
1− c11 − · · · − c1K

+

K∑
i=2

Ai
c11(1− ci1 − · · · − ciK)− ci1(1− c11 − · · · − c1K)

1− c11 − · · · − c1K
.

Introduce the positive numbers Tr and Pr by

Tr = aK−1(· · · ar−2(ar−1(ar − 1) + 1)− 1) · · ·+ (−1)r−1,

PK−1 = aK−1, Pr = ar(Tr+2 + Pr+1 + (−1)r), r ≤ K − 2.

Some computations give us

(c11 + · · ·+ cK1)(1− c11 − · · · − c1K) + c11

 K∑
ij=1

cij − 1

 =
aK

detA
(T3 + P2 − 1)
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and

(1− c21 − · · · − c2K)− c21(1− c11 − · · · − c1K) =
aK

detA
(T2 + 1),

(1− ci1 − · · · − ciK)− ci1(1− c11 − · · · − c1K) =
aK

detA

(
Ti + (−1)i

) i−1∏
r=2

ai, i ≥ 3.

These are positive numbers for ai ≥ 2, what gives the proof after applying the lemma above. ■

Proposition 3.14. Let f satisfy the CY condition. Then for any diagonalizable g ∈ GLf such
that Ng = 0, we have

age(g) ≥
N∑
k=1

qk.

The equality is only reached if g = jf .

Proof. Rewrite f in the coordinates x̃1, . . . , x̃N dual to the basis diagonalizing g. Then each x̃k
is a linear combination of x1, . . . , xN . Moreover, one can renumber the new variables such that
the weight of x̃k is the same as the weight of xk, namely qk.

The element jf is represented in the old and the new basis by the same diagonal matrix. The
given element g acts of x̃k just by a rescaling. Therefore it is enough to show the proposition
for g belonging to the maximal group of diagonal symmetries.

To prove the propositions for g ∈ Gd
f it is enough to prove the inequality for any g ∈ Ggr

f

with Ng = 0 and f , such that the graph Γf has only one connected component.

We have

N∑
k=1

qk = (1, . . . , 1)E−1
f 1 = (1, . . . , 1)

(
ET

f

)−1
1 =

N∑
k=1

qTk . (3.3)

For a given g assume s, such that g = E−1
f s as in Proposition 3.11. None of sk = 0

because Ng = 0. We have

age(g) = ((1, . . . , 1)E−1
f s)T = sT

(
ET

f

)−1
1 =

N∑
k=1

skq
T
k .

First assume f is not star-shaped. Then

N∑
k=1

skq
T
k ≥

N∑
k=1

qTk

because every sk ≥ 1 and qTi are all positive. Combining with equation (3.3) we get the inequality
claimed. Moreover it is obvious that the equality is only reached if sk = 1 for all k. This is
equivalent to the fact that g = jf .

Now let f be star-shaped. We have qT1 = 0 and qTk > 0 for k = 2, . . . , N . By the same
reasoning as above it is enough to consider g = E−1

f s with s2 = · · · = sN = 1. Then

g =

(
s1
a1

,
1

b2

a1 − s1
a1

, . . . ,
1

bN

a1 − s1
a1

)
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for some s1 = 1, . . . , a1 − 1. If f defines an isolated singularity, it should have at least one sum-
mand xr22 · · ·xrNN for some nonnegative r2, . . . , rN . The quasihomogeneity and the g-invariance
conditions on this summand give

N∑
k=2

rk
bk

(
1− 1

a1

)
= 1,

N∑
k=2

rk
bk

a1 − s1
a1

∈ Z≥1.

These two conditions can only hold when s1 = 1. ■

Remark 3.15. The proposition above holds for any invertible polynomial without the Calabi–
Yau condition too. However for noninvertible polynomial without Calabi–Yau condition the
proposition does not hold in general. If particular for f = x101 + x1

(
x22 + x23 + x24

)
and g =(

1
5 ,

2
5 ,

2
5 ,

2
5

)T
we have q =

(
1
10 ,

9
20 ,

9
20 ,

9
20

)
and age(g)−

∑4
k=1 qk = − 1

20 .

4 The total space

Consider the quotient ring

Jac(f) := C[x1, . . . , xN ]
/( ∂f

∂x1
, . . . , ∂f

∂xN

)
.

It is a finite-dimensional C-vector space whenever f defines an isolated singularity. Call it
Jacobian algebra of f and set µf := dimC Jac(f) – the Milnor number of f .

We will assume an additional convention: for the constant function f = 0 set Jac(f) := C,
µf := 1.

4.1 Grading

The reduced weights q1, . . . , qN of f define the Q-grading on C[x1, . . . , xN ]. Introduce the Q-
grading on Jac(f) by setting

deg
([
xα1
1 · · ·xαN

N

])
:= α1q1 + · · ·+ αNqN .

Let ϕ1, . . . , ϕµ be the classes of monomials, generating Jac(f) as a C-vector space. We say that
X ∈ Jac(f) is of degree κ if it is expressed as a C-linear combination of degree κ elements ϕ•.

Denote by Jac(f)κ the linear subspace of Jac(f) spanned by the degree κ elements. Let the
Hessian of f be defined as the following determinant:

hess(f) := det

(
∂2f

∂xi∂xj

)
i,j=1,...,N

.

Its class is nonzero in Jac(f).

Proposition 4.1. The maximal degree of a Jac(f)-element is ĉ = ĉ(f) :=
∑N

k=1(1 − 2qk).
Moreover we have

Jac(f)ĉ = C⟨[hess(f)]⟩.

Proof. See [1, Section II]. ■
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4.2 Pairing

The algebra Jac(f) can be endowed with the C-bilinear nondegenerate pairing ηf called residue
pairing (see [15, Chapter 5], [1, Section 5.11]). The value ηf ([u], [v]) is taken as the projection
of [u][v] to the top graded component Jac(f)ĉ divided by its generator [hess(f)]. In particular,
we have ηf ([1], [hess(f)]) = 1.

Proposition 4.2. For any β, such that 0 ≤ β ≤ ĉ the perfect pairing ηf induces an equivalence

ϕf,β : Jac(f)β ∼= (Jac(f)ĉ−β)
∨, [p] 7→ ηf ([p],−),

where (−)∨ stands for the dual vector space.

Proof. See [1, Section II]. ■

4.3 The total space

For each g ∈ GLf , fix a generator of a one-dimensional vector space Λ(g) :=
∧dg

(
CN/Fix(g)

)
.

Denote it by ξg.
For g ∈ Gd

f , it is standard to choose the generator to be the wedge product of xk with k ∈ Icg
taken in increasing order.

Define Btot(f) as the C-vector spaces of dimension
∑

g∈GLf
dimJac(fg)

Btot(f) :=
⊕

g∈GLf

Jac(fg)ξg. (4.1)

Each direct summand Jac(fg)ξg will be called the g-th sector. We will write just Btot when the
polynomial is clear from the context.

Remark 4.3. Note that for g, h ∈ G, such that Fix(g) = Fix(h), we have fg = fh. Then
Jac(fg) = Jac(fh), but the formal letters ξg ̸= ξh help to distinguish Jac(fg)ξg and Jac(fh)ξh,
such that Jac(fg)ξg ⊕ Jac(fh)ξh is indeed a direct sum of dimension dimJac(fg) + dimJac(fh).

4.4 B-model group action

Note that an element h ∈ GLf induces a map

h : Fix(g) → Fix
(
hgh−1

)
and hence h : Λ(g) → Λ

(
hgh−1

)
.

Since we have fixed the generators ξ•, the latter map provides a constant ρh,g ∈ C∗ such that
h(ξg) = ρh,gξhgh−1 . We have

ρh2,h1gh
−1
1
ρh1,g = ρh2h1,g. (4.2)

Note, that if g, h ∈ Gd
f or, more generally, if g and h commute ρh,g is independent of the

choice of the generators since g = hgh−1. More precisely, in this case it could be computed as
follows. Let λk, λ

′
k be the eigenvalues of h and g in their common eigenbasis, then

ρh,g =
∏

k=1,...,N
λ′
k ̸=1

λk.

We define the action of GLf on Btot by

h∗([p(x)]ξg) = ρh,g
[
p
(
h−1 · x

)]
ξhgh−1 .
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This is indeed a group action, i.e., (h2h1)
∗ = h∗2 · h∗1. Indeed, using equation (4.2) we get

(h2h1)
∗[p(x)]ξg = ρh2h1,g

[
p
(
(h2h1)

−1 · x
)]
ξ(h2h1)g(h2h1)−1

= ρh2,h1gh
−1
1
ρh1,g

[
p
(
h−1
1 h−1

2 · x
)]
ξh2h1gh

−1
1 h−1

2

= h∗2
(
ρh1,g

[
p
(
h−1
1 · x

)]
ξh1gh

−1
1

)
= h∗2h

∗
1([p(x)]ξg).

Note that, in particular, if g, h ∈ Gd
f then h acts on ξg by

h : ξg 7→ h∗(ξg) :=
∏
k∈Icg

hk · ξg.

Example 4.4. Because Icid = Ijf = ∅, we have

h∗(ξid) = ξid and h∗(ξjf ) = det(h)ξjf

for any h ∈ GLf . Similarly for any [p]ξg with a homogeneous p ∈ C[x1, . . . , xN ] and g ∈ GLf we
have

(jf )
∗([p]ξg) = e

[
−deg(p) +

∑
k∈Icg

qk

]
· [p]ξg.

For a finite G ⊆ GLf put

Btot,G :=
⊕
g∈G

Jac(fg)ξg ⊂ Btot

and define the B-model state space B(f,G) by B(f,G) := (Btot,G)
G. Namely, the linear span of

the Btot vectors that are invariant with respect to the action of all elements of G.

Remark 4.5. In the literature (see, for example, [25]) a different definition could be found where
the sum is taken over the representatives of the conjugacy classes of G and the invariants in
each sector are taken with respect to the centralizer of the corresponding g. The two definitions
are in fact equivalent in the same way as in [3, Proposition 42].

Example 4.6. Let f = xa11 – the Fermat type polynomial. Assume a1 = rm and consider G to
be generated by g = (1/r). We have

Btot = C
〈
[1]ξid, [x1]ξid, . . . ,

[
xrm−2
1

]
ξid

〉
⊕ C⟨[1]ξg, . . . , [1]ξgr−1⟩.

Because Icg = Ic
gk

= {1}, we have

(
gk
)∗
(ξgl) = exp

(
2πi · k

r

)
ξgl .

However
(
gk
)∗([

xl1
])

= exp
(
−2πi · kl

r

)[
xl1

]
and the G-invariant monomials are xrn1 with n ∈ Z.

This gives

B(f,G) = C
〈
[1]ξid, [x

r
1]ξid, . . . ,

[
x
r(m−1)
1

]
ξid

〉
.
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4.5 Bigrading

The following operators ql, qr : Btot → Q were first introduced in [17] giving the bigrading we
use.

For any homogeneous p ∈ C[x1, . . . , xN ] define for [p]ξg its left charge ql and right charge qr
to be

(ql, qr) =

(
deg p−

∑
k∈Icg

qk + age(g),deg p−
∑
k∈Icg

qk + age
(
g−1

))
. (4.3)

This definition endows Btot with the structure of a Q-bigraded vector space. For u, v ∈ Gd
f it

follows immediately that q•(ξu) + q•(ξv) = q•(ξuv) for u, v ∈ G, such that Icu ∩ Icv = ∅.
This bigrading restricts to B(f,G) because ql, qr commute with the action of h∗ for any

h ∈ GLf , h preserves the weights and age(g) = age
(
hgh−1

)
.

5 Hodge diamond of LG orbifolds

Assume N ≥ 3 and the reduced weight set of f to satisfy the CY condition
∑N

k=1 qk = 1 (see
also Section 3.6).

Proposition 5.1. For f satisfying CY condition and G, such that J ⊆ G ⊆ SLf both left and
right charges ql and qr of any Y ∈ B(f,G) are integer.

Proof. Note that qr([p]ξg) = ql([p]ξg) + (N − Ng) − 2age(g). Due to age(g) ∈ Z the right
charge qr([p]ξg) is integral if and only if ql([p]ξg) is integral. It remains to recall that

(jf )
∗([p]ξg) = e

[
−deg(p) +

∑
k∈Icg

qk

]
· [p]ξg

by Example 4.4. Hence for a class in B(f,G) we have e[−ql+age(g)] = 1 and so ql is integer. ■

The following two propositions state that the graded pieces of B(f,G) are organized into
a diamond when CY condition holds.

Proposition 5.2. Let f be a quasihomogeneous polynomial satisfying the CY condition, let
G ⊆ SLf be a finite subgroup, and let V a,b stand for the bidegree (a, b)-subspace of B(f,G). We
have

(i) V a,b = 0 for a < 0 or b < 0;

(ii) V 0,0 ∼= C, generated by [1]ξid;

(iii) V a,b = 0 for a > N − 2 or b > N − 2;

(iv) V N−2,N−2 ∼= C, generated by [hess(f)]ξid.

Proof. Assume X = [p]ξg for p being a polynomial fixed by g.
(i) If g = id we have ql(X) = qr(X) = deg p ≥ 0. For g ̸= id we have age(g) ∈ N≥1. Rewriting

ql(X) = deg p−
∑
k∈Icg

qk + age(g),

we see that ql(X) ≥ 0 because
∑

k∈Icg qk ≤
∑N

k=1 qk = 1. Similarly for qr(X) by the same
argument applied to age

(
g−1

)
.

(ii) If g = id we have that ql(X) = qr(X) = 0 if and only if deg p = 0. By Propositions 4.1
and 4.2, we have [p] = α[1] in Jac(f) for some constant α ∈ C.
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For g ̸= id, we just saw that age(g) ≥ 1 and
∑

k∈Icg qk ≤ 1, so ql(X) = qr(X) = 0 is achieved
only if deg p = 0, Ng = 0 and age(g) = age(g−1) = 1, which implies

N = age(g) + age
(
g−1

)
+Ng = 2.

(iii) If g = id, the statement follows from Proposition 4.1 as given the CY condition we have
ĉ = N − 2

∑
k qk = N − 2.

For g ̸= id, apply the same proposition again to estimate deg p in Jac(fg). Namely, it gives

ql(X) ≤ Ng − 2
∑
k∈Ig

qk −
∑
k∈Icg

qk + age(g) = Ng −
∑
k∈Ig

qk − 1 + age(g).

At the same time, we have Ng + age(g) = N − age
(
g−1

)
≤ N − 1 because age

(
g−1

)
∈ N≥1.

Combining this with the inequality above we get

ql(X) ≤ N − 2−
∑
k∈Ig

qk ≤ N − 2. (5.1)

One gets in the similar way that qr(X) ≤ N − 2.
(iv) If g = id, by Proposition 4.1, we see that ql([hess(f)]ξid) = qr([hess(f)]ξid) = N − 2.

If g ̸= id, ql(X) = qr(X) = N − 2, then equation (5.1) implies that
∑

k∈Ig qk = 0 and, hence,
Ng = 0 and age(g) = age

(
g−1

)
= 1, which altogether implies

N = age(g) + age
(
g−1

)
+Ng = 2. ■

We now construct two symmetries of Btot. The horizontal morphism Ψ and the vertical
morphism Φ.

Consider the direct sum decomposition of Btot as in equation (4.1). We first extend the ϕf,β

isomorphism of Proposition 4.2 to Btot in the following way. The hessian matrix of fg viewed
coordinate free is a bilinear form on the tangent bundle of Fix(g). Therefore, its determinant

hess(fg) is canonically an element of
(
ΛNgFix(g)∨

)⊗2 ⊗ C[Fix(g)]. Fix a generator

ξ∨g := ιξgdx1 ∧ · · · ∧ dxN ∈ ΛNgFix(g)∨,

where ι is the interior product operator and let the generator of
(
ΛNgFix(g)∨

)⊗2
to be (ξ∨g )

⊗2.
This choice allows us to fix hess(fg) as a function on Fix(g) and, hence fix a pairing ηfg for the
g-sector. As in Proposition 4.2, this in turn defines an isomorphism ϕfg ,β on each sector. Now
the vertical morphism Φ is the direct sum of these isomorphisms acting on each sector of Btot

Φ :=
⊕

g∈GLf ,β∈Q
ϕfg ,β : Btot → B∨

tot.

It is an isomorphism restricted to Btot,G for any finite G because each of ϕfg ,β is an isomorphism.
Define the horizontal morphism Ψ to act on the g-th sector by Ψ([p]ξg) := [p]ξg−1 . Extend it

by linearity to all Btot. This is an isomorphism because fg = fg−1
and Jac(fg) = Jac

(
fg−1)

.

Proposition 5.3.

(1) The maps Φ and Ψ are well defined on B(f,G) for any finite G ⊆ SLf .

(2) For f satisfying CY condition and a finite G ⊆ SLf , let V
a,b stand for the bidegree (a, b)-

subspace of B(f,G). Then the maps Ψ and Φ induce the C-vector spaces isomorphisms

V a,b ∼= V b,a and V a,b ∼=
(
V N−2−b,N−2−a

)∨
.
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Proof. 1) The map Ψ commutes with the G-action since Fix(g) = Fix
(
g−1

)
. Hence Ψ preserves

the invariants.
To see that Φ commute with the G-action, recall first that, f

(
h−1 · x

)
= f(x) and, hence,

fg
(
h−1 · x

)
= fhgh−1

(x). Furthermore, since det(h) = 1 we have ρh,gh
∗(ξ∨hgh−1

)
= ξ∨g and we

can conclude that

ρ2h,gηfhgh−1

([
p1
(
h−1 · x

)]
ξhgh−1 ,

[
p2
(
h−1 · x

)]
ξhgh−1

)
= ηfg([p1(x)]ξg, [p2(x)]ξg).

Now, by the definition of G-action we get

η
fhgh−1 (h∗([p1(x)]ξg), h

∗([p2(x)]ξg)) = ηfg([p1(x)]ξg, [p2(x)]ξg).

This implies the statement.
2) We have directly by the definition that ql(Ψ(X)) = qr(X) and qr(Ψ(X)) = ql(X). The

first isomorphism follows.
To verify compatibility of Φ with the grading, note first, that ĉ(fg) =

∑
k∈Ig(1− 2qk). Thus,

by Proposition 4.2 the left charge of [ϕfg ,deg p(p)]ξg is given by

ql([ϕfg ,deg p(p)]ξg) =
∑
k∈Ig

(1− 2qk)− deg p−
∑
k∈Icg

qk + age(g)

= Ng − 2
∑
k∈Ig

qk − deg p−
∑
k∈Icg

qk +
(
N −Ng − age

(
g−1

))
= −2 +

∑
k∈Icg

qk − deg p+N − age
(
g−1

)
= N − 2− qr([p]ξg).

The computation for the right charge is identical. ■

Consider now two more special graded pieces of B(f,G).

Proposition 5.4. For f satisfying CY condition and a finite G, such that J ⊆ G ⊆ SLf , let V
a,b

stand for the bidegree (a, b)-subspace of B(f,G). Then

(1) V N−2,0 ∼= C, generated by [1]ξj−1
f
,

(2) V 0,N−2 ∼= C, generated by [1]ξjf .

Proof. One notes immediately that [1]ξjf and [1]ξj−1
f

are non-zero in B(f,G) and belong

to V 0,N−2 and V N−2,0 respectively. By Proposition 5.3 it is enough to show one of the state-
ments.

Lemma 5.5. dimV 0,N−2 = {g ∈ G | age(g) = 1, Ng = 0}.

Proof. Let [p]ξg ∈ V 0,N−2. It follows from equations (3.2) and (4.3) that age(g) = 1 − Ng/2.
The statement follows by Proposition 3.7. ■

Under the CY condition for g ∈ GLf\{id} of finite order and with integral age(g) we have
by Proposition 3.14 that age(g) ≥ 1 with the equality being reached only for g = jf . This
completes the proof. ■

This completes the proof of Theorem 1.1.
For a fixed pair (f,G) set

ha,b := dimC {X ∈ B(f,G) | (ql(X), qr(X)) = (a, b)}

and denote D := N − 2.
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It follows from the propositions above that for f satisfying CY condition and G such that
J ⊆ G ⊆ SLf , the numbers ha,b form a diamond,

h0,0

h0,1h1,0

h1,1h2,0 h0,2

...
. . .

...

hD,0 h0,D

. . .
...

...
. . .

...

hD,D−1 hD−1,D

hD,D

↶
Ψ

↕ Φ

g-th sector
h-th sector

g−1-th sector

h−1-th sector

Let us call the line
{
ha,b | a+ b = D

}
the horizontal line and the line

{
ha,b | a− b = 0

}
the

vertical line. The Hodge diamond
{
ha,b

}D

a,b=0
has the following special properties

(1) The g-th sector of B(f,G) contributes as a line symmetric with respect to the horizontal
line.

(2) Every g-th sector of B(f,G) contributes together with a g−1-th sector of B(f,G), located
symmetrically with respect to the vertical line.

(3) All the elements of the form ξjkf
contribute to the horizontal line. In particular, ha,D−a ≥ 1

for all a = 0, . . . , D.

(4) All the elements of the form [p]ξid contribute to the vertical line.

Example 5.6. Consider f = x21x2 + x22 + x2x
6
3 + x64 + x1x

9
3 and G = SLf . Then G = J = ⟨jf ⟩

with

jf =

(
1

4
,
1

2
,
1

12
,
1

6

)
.

The basis of B(f,G) is given by the elements

ξj3f
, ξj5f

, ξj7f
, ξj9f

, [x1]ξj4f
, [x1]ξj8f

,
[
x24

]
ξj6f

,
[
x43x

4
4

]
ξid,[

x1x3x
4
4

]
ξid,

[
x1x

3
3x

3
4

]
ξid,

[
x2x

3
4

]
ξid,

[
x21x

3
4

]
ξid,

[
x1x

5
3x

2
4

]
ξid,[

x2x
2
3x

2
4

]
ξid,

[
x21x

2
3x

2
4

]
ξid,

[
x2x

4
3x4

]
ξid, [x1x2x3x4]ξid,

[
x31x3x4

]
ξid,[

x21
]
ξid,

[
x22

]
ξid.

all having the bigrading (1, 1), and the elements

ξjf , ξj11f
, [1]ξid,

[
x1x

2
2x3x

4
4

]
ξid,

having the bigrading (0, 2), (2, 0), (0, 0) and (2, 2), respectively.
One gets the following diamond:

1

0 0

1

1 1

00

20
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Example 5.7. Let f = x51+x52+x53+x54+x55 and G = S⋉J , where S = ⟨(1, 2), (2, 3)⟩ ⊂ S5 is the
subgroup permuting first 3 variables and preserving the last two. Pick ξ(1,2,3) and ξ(1,3,2) in such
a way that (1, 2)(ξ(1,2,3)) = ξ(1,3,2); ξ(1,2,3)jf and ξ(1,3,2)jf in such a way that (1, 2)(ξ(1,2,3)jf ) =
ξ(1,3,2)jf and so on. Then the basis of B(f,G) is

ξid and
[
x31x

3
2x

3
3x

3
4x

3
5

]
ξid

in bidegrees (0, 0) and (3, 3), respectively;

[x1x2x3x4x5]ξid,
[
x34x

2
5

]
ξid,

[
x24x

3
5

]
ξid,

[
x1x2x3x

2
4

]
ξid,

[
x1x2x3x

2
5

]
ξid,[

(x1 + x2 + x3)
2
]
(ξ(1,2,3) + ξ(1,3,2)),

[
x24

]
(ξ(1,2,3) + ξ(1,3,2)),[

x25
]
(ξ(1,2,3) + ξ(1,3,2)), [(x1 + x2 + x3)x4](ξ(1,2,3) + ξ(1,3,2)),

[(x1 + x2 + x3)x5](ξ(1,2,3) + ξ(1,3,2)), [x4x5](ξ(1,2,3) + ξ(1,3,2))

in bidegree (1, 1);

ξjf and ξj4f

in bidegrees (3, 0) and (0, 3), respectively;

ξj2f
, ξ(1,2,3)jf + ξ(1,3,2)jf , ξ(1,2,3)j2f

+ ξ(1,3,2)j2f

in bidegree (2, 1);

ξj3f
, ξ(1,2,3)j3f

+ ξ(1,3,2)j3f
, ξ(1,2,3)j4f

+ ξ(1,3,2)j4f

in bidegree (1, 2);[
x21x

2
2x

2
3x

2
4x

2
5

]
ξid,

[
x21x

2
2x

2
3x

3
4x5

]
ξid,

[
x21x

2
2x

2
3x4x

3
5

]
ξid,

[
x31x

3
2x

3
3x4

]
ξid,[

x31x
3
2x

3
3x5

]
ξid,

[
(x1 + x2 + x3)

3x34x5
]
(ξ(1,2,3) + ξ(1,3,2)),[

(x1 + x2 + x3)
3x4x

3
5

]
(ξ(1,2,3) + ξ(1,3,2)),

[
(x1 + x2 + x3)x

3
4x

3
5

]
(ξ(1,2,3) + ξ(1,3,2)),[

(x1 + x2 + x3)
3x24x

2
5

]
(ξ(1,2,3) + ξ(1,3,2)),

[
(x1 + x2 + x3)

2x34x
2
5

]
(ξ(1,2,3) + ξ(1,3,2)),[

(x1 + x2 + x3)
2x24x

3
5

]
(ξ(1,2,3) + ξ(1,3,2))

in bidegree (2, 2).
This gives the following diamond:

1

0 0

11

0 0

33

11

1 1

0 0

0 0

1
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