Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 024, 25 pages      arXiv:2307.01295      https://doi.org/10.3842/SIGMA.2024.024

Hodge Diamonds of the Landau-Ginzburg Orbifolds

Alexey Basalaev ab and Andrei Ionov c
a) Faculty of Mathematics, National Research University Higher School of Economics, 6 Usacheva Str., 119048 Moscow, Russia
b) Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia
c) Boston College, Department of Mathematics, Maloney Hall, Fifth Floor, Chestnut Hill, MA 02467-3806, USA

Received July 12, 2023, in final form March 06, 2024; Published online March 25, 2024

Abstract
Consider the pairs $(f,G)$ with $f = f(x_1,\dots,x_N)$ being a polynomial defining a quasihomogeneous singularity and $G$ being a subgroup of ${\rm SL}(N,\mathbb{C})$, preserving $f$. In particular, $G$ is not necessary abelian. Assume further that $G$ contains the grading operator $j_f$ and $f$ satisfies the Calabi-Yau condition. We prove that the nonvanishing bigraded pieces of the B-model state space of $(f,G)$ form a diamond. We identify its topmost, bottommost, leftmost and rightmost entries as one-dimensional and show that this diamond enjoys the essential horizontal and vertical isomorphisms.

Key words: singularity theory; Landau-Ginzburg orbifolds.

pdf (516 kb)   tex (34 kb)  

References

  1. Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps. Vol. I: The classification of critical points, caustics and wave fronts, Monogr. Math., Vol. 82, Birkhäuser, Boston, MA, 1985.
  2. Basalaev A., Ionov A., Mirror map for Fermat polynomials with a nonabelian group of symmetries, Theoret. and Math. Phys. 209 (2021), 1491-1506, arXiv:2103.16884.
  3. Basalaev A., Ionov A., Hochschild cohomology of Fermat type polynomials with non-abelian symmetries, J. Geom. Phys. 174 (2022), 104450, 28 pages, arXiv:2011.05937.
  4. Basalaev A., Takahashi A., Hochschild cohomology and orbifold Jacobian algebras associated to invertible polynomials, J. Noncommut. Geom. 14 (2020), 861-877, arXiv:1802.03912.
  5. Basalaev A., Takahashi A., Werner E., Orbifold Jacobian algebras for exceptional unimodal singularities, Arnold Math. J. 3 (2017), 483-498, arXiv:1702.02739.
  6. Basalaev A., Takahashi A., Werner E., Orbifold Jacobian algebras for invertible polynomials, J. Singul. 26 (2023), 92-127, arXiv:1608.08962.
  7. Berglund P., Henningson M., Landau-Ginzburg orbifolds, mirror symmetry and the elliptic genus, Nuclear Phys. B 433 (1995), 311-332, arXiv:hep-th/9401029.
  8. Berglund P., Hübsch T., A generalized construction of mirror manifolds, Nuclear Phys. B 393 (1993), 377-391, arXiv:hep-th/9201014.
  9. Chiodo A., Ruan Y., LG/CY correspondence: the state space isomorphism, Adv. Math. 227 (2011), 2157-2188, arXiv:0908.0908.
  10. Clawson A., Johnson D., Morais D., Priddis N., White C.B., Mirror map for Landau-Ginzburg models with nonabelian groups, J. Geom. Phys., to appear, arXiv:2302.02782.
  11. Ebeling W., Gusein-Zade S.M., Dual invertible polynomials with permutation symmetries and the orbifold Euler characteristic, SIGMA 16 (2020), 051, 15 pages, arXiv:1907.11421.
  12. Ebeling W., Gusein-Zade S.M., A version of the Berglund-Hübsch-Henningson duality with non-abelian groups, Int. Math. Res. Not. 2021 (2021), 12305-12329, arXiv:1807.04097.
  13. Ebeling W., Takahashi A., Variance of the exponents of orbifold Landau-Ginzburg models, Math. Res. Lett. 20 (2013), 51-65, arXiv:1203.3947.
  14. Francis A., Jarvis T., Johnson D., Suggs R., Landau-Ginzburg mirror symmetry for orbifolded Frobenius algebras, in String-Math 2011, Proc. Sympos. Pure Math., Vol. 85, American Mathematical Society, Providence, RI, 2012, 333-353, arXiv:1111.2508.
  15. Griffiths P., Harris J., Principles of algebraic geometry, Wiley Classics Lib., John Wiley & Sons, New York, 1994.
  16. Hertling C., Kurbel R., On the classification of quasihomogeneous singularities, J. Singul. 4 (2012), 131-153, arXiv:1009.0763.
  17. Intriligator K., Vafa C., Landau-Ginzburg orbifolds, Nuclear Phys. B 339 (1990), 95-120.
  18. Ionov A., McKay correspondence and orbifold equivalence, J. Pure Appl. Algebra 227 (2023), 107297, 11 pages, arXiv:2202.12135.
  19. Kaufmann R.M., Orbifolding Frobenius algebras, Internat. J. Math. 14 (2003), 573-617, arXiv:math.AG/0107163.
  20. Kaufmann R.M., Singularities with symmetries, orbifold Frobenius algebras and mirror symmetry, in Gromov-Witten theory of Spin Curves and Orbifolds, Contemp. Math., Vol. 403, American Mathematical Society, Providence, RI, 2006, 67-116, arXiv:math.AG/0312417.
  21. Krawitz M., FJRW rings and Landau-Ginzburg mirror symmetry, Ph.D. Thesis, The University of Michigan, 2010.
  22. Kreuzer M., The mirror map for invertible LG models, Phys. Lett. B 328 (1994), 312-318, arXiv:hep-th/9402114.
  23. Kreuzer M., Skarke H., On the classification of quasihomogeneous functions, Comm. Math. Phys. 150 (1992), 137-147, arXiv:hep-th/9202039.
  24. Milnor J., Orlik P., Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393.
  25. Mukai D., Nonabelian Landau-Ginzburg orbifolds and Calabi-Yau/Landau-Ginzburg correspondence, arXiv:1704.04889.
  26. Orlik P., Solomon L., Singularities. II. Automorphisms of forms, Math. Ann. 231 (1978), 229-240.
  27. Priddis N., Ward J., Williams M.M., Mirror symmetry for nonabelian Landau-Ginzburg models, SIGMA 16 (2020), 059, 31 pages, arXiv:1812.06200.
  28. Saito K., Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123-142.
  29. Shklyarov D., On Hochschild invariants of Landau-Ginzburg orbifolds, Adv. Theor. Math. Phys. 24 (2020), 189-258, arXiv:1708.06030.
  30. Vafa C., String vacua and orbifoldized LG models, Modern Phys. Lett. A 4 (1989), 1169-1185.
  31. Witten E., Phases of $N=2$ theories in two dimensions, Nuclear Phys. B 403 (1993), 159-222, arXiv:hep-th/9301042.
  32. Yu X., McKay correspondence and new Calabi-Yau threefolds, Int. Math. Res. Not. 2017 (2017), 6444-6468, arXiv:1507.00577.

Previous article  Next article  Contents of Volume 20 (2024)