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Abstract. For a non-associative algebra A with a derivation d, its derived algebra A(d) is
the same space equipped with new operations a ≻ b = d(a)b, a ≺ b = ad(b), a, b ∈ A. Given
a variety Var of algebras, its derived variety is generated by all derived algebras A(d) for all A
in Var and for all derivations d of A. The same terminology is applied to binary operads
governing varieties of non-associative algebras. For example, the operad of Novikov algebras
is the derived one for the operad of (associative) commutative algebras. We state a sufficient
condition for every algebra from a derived variety to be embeddable into an appropriate
differential algebra of the corresponding variety. We also find that for Var = Zinb, the
variety of Zinbiel algebras, there exist algebras from the derived variety (which coincides
with the class of pre-Novikov algebras) that cannot be embedded into a Zinbiel algebra with
a derivation.
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1 Introduction

The class of nonassociative algebras with one binary operation satisfying the identities of left
symmetry

(xy)z − x(yz) = (yx)z − y(xz) (1.1)

and right commutativity

(xy)z = (xz)y (1.2)

is known as the variety of Novikov algebras. Relations (1.1) and (1.2) emerged in [2, 10] as
a tool for expressing certain conditions on the components of a tensor of rank 3 considered as
a collection of structure constants of a finite-dimensional algebra with one bilinear operation.
In [10], it was a sufficient condition for a differential operator to be Hamiltonian; in [2] it was
a condition to guarantee the Jacobi identity for a generalized Poisson bracket in the framework
of Hamiltonian formalism for partial differential equations of hydrodynamic type.

Novikov algebras may be obtained from (associative) commutative algebras with a derivation
by means of the following operation-transforming functor (see [10]). Assume A is a commutative
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algebra with a multiplication ∗, and let d be a derivation of A, i.e., a linear operator d : A → A
satisfying the Leibniz rule

d(a ∗ b) = d(a) ∗ b+ a ∗ d(b), a, b ∈ A.

Then the new operation

ab = a ∗ d(b), a, b ∈ A, (1.3)

satisfies the identities (1.1) and (1.2).
In [9], it was proved that the free Novikov algebra Nov⟨X⟩ generated by a setX is a subalgebra

of the free differential commutative algebra with respect to the operation (1.3). Moreover, it
was shown in [4] that every Novikov algebra can be embedded into an appropriate commutative
algebra with a derivation.

One may generalize the relation between commutative algebras with a derivation and Novikov
algebras as follows. Let Var be a class of all algebras over a field k with one or more bilinear
operations which is closed under direct products, subalgebras, and homomorphic images (HSP-
class or variety). By the classical Birkhoff’s theorem, a variety consists of all algebras that
satisfy some family of identities. We will assume that Var is defined by multi-linear identities
(this is not a restriction if char k = 0). For every A ∈ Var, let End(A) stand for the set of all
linear operators on the space A. Then a linear operator d ∈ End(A) is called a derivation if the
analogue of the Leibniz rule holds for every binary operation in A. The set of all derivations
of a given algebra A forms a subspace (even a Lie subalgebra) Der(A) of End(A). The class of
all pairs (A, d), A ∈ Var, d ∈ Der(A), is also a variety denoted VarDer defined by multi-linear
identities. Given (A, d) ∈ VarDer, denote by A(d) the same space A equipped with two bilinear
operations ≺, ≻ for each operation on A:

a ≺ b = ad(b), a ≻ b = d(a)b, a, b ∈ A.

The class of all systems A(d), (A, d) ∈ VarDer, is closed under direct products, so all homomor-
phic images of all their subalgebras form a variety denoted DVar, called the derived variety of
Var (see [19]). Alternatively, DVar consists of all algebras with duplicated family of operations
that satisfy all those identities that hold on all A(d) for all (A, d) ∈ VarDer.

For example, if Com is the variety of commutative (and associative) algebras then DCom =
Nov since x ≺ y = y ≻ x. In general, the description of DVar may be obtained in the language
of operads and their Manin products [19]. Namely, if we identify the notations for a variety
and its governing operad [11] then the operad DVar coincides with the Manin white product of
operads Var and Nov.

As a corollary, the free algebra DVar⟨X⟩ in the variety DVar generated by a set X is iso-
morphic to the subalgebra in the free algebra in the variety VarDer generated by X. However,
it is not clear that the following embedding statement holds in general: every DVar-algebra
can be embedded into an appropriate differential Var-algebra (or VarDer-algebra). In other
words, the problem is to determine whether the class of all subalgebras of all algebras A(d),
(A, d) ∈ VarDer, is closed under homomorphic images. Positive answers were obtained for
Var = Com [4], Var = Lie [19], Var = Perm [18], Var = As [21].

In this paper, we derive a sufficient condition for a positive answer to the embedding statement
for a given Var. Namely, if the Manin white product Nov ◦ Var of the corresponding operads
coincides with the Hadamard product Nov ⊗Var then the embedding statement holds for Var.

We also find an example of a variety Var governed by a binary quadratic operad such that the
embedding statement fails for Var. It turns out that the variety of Zinbiel algebras Zinb (also
known as commutative dendriform algebras, pre-commutative algebras, dual Leibniz algebras,
half-shuffle algebras) introduced in [20] provides such an example: there exists a DZinb-algebra
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which cannot be embedded into a Zinbiel algebra with a derivation. To our knowledge, this is the
first example of such a variety Var that an algebra from DVar does not embed into a differential
Var-algebra.

The operad Zinb governing the variety of Zinbiel algebras is a particular case of a general
construction called dendriform splitting of an operad [1]. For every binary operad Var (not
necessarily quadratic, see, e.g., [13]) there exists an operad preVar governing the class of systems
with duplicated family of operations. The generic example of a preVar algebra may be obtained
from a Var-algebra with a Rota–Baxter operator R of weight zero (see, e.g., [14]). If A ∈ Var
and R : A → A is such an operator then (A,⊢,⊣), where

a ⊢ b = R(a)b, a ⊣ b = aR(b), a, b ∈ A,

is a preVar-algebra. In this context, preCom = Zinb (since a ⊢ b = b ⊣ a), preLie is the classical
variety of left-symmetric algebras (relative to ⊢), preAs is exactly the variety of dendriform
algebras [20].

The theory of pre-algebras and relations between them is similar in many aspects to the
theory of “ordinary” algebras. For example, every preAs-algebra with respect to the “dendriform
commutator” a ⊢ b− b ⊣ a is a preLie-algebra. The properties of the corresponding left adjoint
functor (universal envelope) are close to what we have for ordinary Lie algebras [6, 12]. The class
of pre-Novikov algebras has been recently studied in [24]: it coincides with DZinb. Therefore,
our results show that the embedding statement cannot be transferred from ordinary algebras to
pre-algebras.

2 Derived algebras and Manin white product of binary operads

The details about (symmetric) operads may be found, for example, in [5]. For an operad P
denote P(n) the linear space (over a base field k) of degree n elements of P, the action of
a permutation σ ∈ Sn on an element f ∈ P(n) is denoted fσ, let id ∈ P(1) stand for the identity
element, and the composition rule

P(n)⊗ P(m1)⊗ · · · ⊗ P(mn) → P(m1 + · · ·+mn)

is denoted γm1+···+mn
m1,...,mn

.
Recall that an operad P is said to be binary, if P(1) = kid and the entire P is generated (as

an operad) by its degree 2 space P(2).
Let us fix a binary operad P. For every linear space A, consider an operad EndA with

EndA(n) = End (A⊗n, A). A morphism of operads P → EndA defines an algebra structure on A
with a set of binary operations corresponding to the generators of P from P(2). The class of all
such algebras is a variety of P-algebras defined by multi-linear identities corresponding to the
defining relations of the operad P.

Conversely, every variety of algebras with binary operations defined by multi-linear identities
gives rise to an operad P constructed in such a way that P(n) is the space of multi-linear
elements of degree n in the variables x1, . . . , xn of the free algebra in this variety generated by
the countable set {x1, x2, . . .} (see, e.g., [17, Section 1.3.5] for details). In particular, id ∈ P(1)
is presented by the element x1. Then the variety under consideration consists exactly of all
P-algebras, in other words, it is governed by the operad P.

Example 2.1. Let µ, ν ∈ P(2). Suppose we have identified µ with x1x2 and ν with x1 ∗ x2.
Then

γ31,2(µ, id, ν) = γ31,2(x1x2, x1, x1 ∗ x2) = x1(x2 ∗ x3),

γ42,2
(
ν(12), µ, ν

)
= γ42,2(x2 ∗ x1, x1x2, x1 ∗ x2) = (x3 ∗ x4) ∗ (x1x2),

and so on.
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We will not distinguish notations for an operad P and for the corresponding variety of P-
algebras.

Example 2.2. Suppose F2 is the free binary operad with F2(2) ≃ kS2 (as symmetric modules).
Then the class of F2-algebras coincides with the variety of all nonassociative algebras with
one non-symmetric binary operation, i.e., F2(n) may be identified with the linear span of all
bracketed monomials

(
xσ(1) · · ·xσ(n)

)
, σ ∈ Sn, so dimF2(n) = n!Cn−1, where Ck is the kth

Catalan number.

If P is an operad governing a variety of algebras with one binary operation then P is a ho-
momorphic image of F2. If the kernel of the morphism is generated (as an operadic ideal) by
elements from F2(3) then the operad P is said to be quadratic. The same definition works for
operads with more than one generator.

Example 2.3. Let Zinb stand for the variety of algebras with one multiplication satisfying the
identity

(x1 · x2) · x3 = x1 · (x2 · x3 + x3 · x2), (2.1)

known as the Zinbiel identity [20]. Then the space Zinb(n), n ≥ 1, is spanned by linearly
independent monomials(

xσ−1(1) ·
(
xσ−1(2) ·

(
· · ·

(
xσ−1(n−1) · xσ−1(n)

)
· · ·

)))
= [x1x2 · · ·xn−1xn]

σ, σ ∈ Sn,

so dimZinb(n) = n!.
The product of two right-normed words in a Zinbiel algebra can be expressed via shuffle

permutations Sn,m ⊂ Sn+m: if u = x1 · · ·xn, v = xn+1 · · ·xn+m then

[u] · [v] =
∑

σ∈Sn,m : σ(1)=1

[uv]σ.

The new product [u] · [v] + [v] · [u] on a Zinbiel algebra is associative and commutative (it is
known as the shuffle product of words).

Suppose P1 and P2 are two binary operads. Then the Hadamard product of P1 and P2 is the
operad denoted P = P1 ⊗P2 such that P(n) = P1(n)⊗P2(n), n ≥ 1, the action of Sn on P(n)
and the composition rule are defined in the componentwize way.

The operad P1⊗P2 may not be a binary one (in this paper, we will deal with such an example
below). The sub-operad of P1⊗P2 generated by P1(2)⊗P2(2) is called the Manin white product
of P1 and P2 denoted by P1 ◦ P2. (For some operads P1, it may happen that P1 ◦ P2 = P1 ⊗P2

for all P2; in [22], all such operads were described.)
If P1 and P2 are quadratic binary operads then so is P1 ◦ P2. The defining relations of

the last operad can be found as follows [11]. Suppose Ri ⊆ Pi(3), i = 1, 2, are the spaces of
defining relations of Pi presented in the form of multi-linear identities in x1, x2, x3. Consider the
space E(3) spanned by all possible compositions of degree 3 of operations from P1(2) ⊗ P2(2).
Then the defining relations of P1 ◦ P2 form the space E(3) ∩ (P1(3)⊗R2 +R1 ⊗ P2(3)).

Example 2.4. Let P1 = Nov, P2 = Zinb. Then P1(2)⊗ P2(2) is spanned by four elements

x1 ≺ x2 = x1x2 ⊗ x1x2, x1 ≻ x2 = x2x1 ⊗ x1x2,

x2 ≺ x1 = x2x1 ⊗ x2x1, x2 ≻ x1 = x1x2 ⊗ x2x1.

In order to find E(3), calculate all monomials of degree 3 in x1, x2, x3 with operations ≻, ≺.
For example,

(x1 ≻ x3) ≺ x2 = γ31,2(x2 ≺ x1, id, x1 ≻ x2)
(12)



On Pre-Novikov Algebras and Derived Zinbiel Variety 5

= γ31,2(x2x1, id, x2x1)
(12) ⊗ γ31,2(x2x1, id, x1x2)

(12)

= (x3x2)x
(12)
1 ⊗ (x2x3)x

(12)
1 = (x3x1)x2 ⊗ (x2x3)x1 ∈ Nov(3)⊗ Zinb(3).

In the same way, the expressions for all 48 monomials may be calculated in Nov(3) ⊗ Zinb(3).
In order to get defining relations of Nov ◦ Zinb it is enough to find those linear combinations of
these monomials that are zero in Nov(3)⊗ Zinb(3). This is a routine problem of linear algebra.
As a result, we obtain the following identities:

(x1 ≺ x2) ≺ x3 = (x1 ≺ x3) ≺ x2,

x1 ≻ (x2 ≻ x3) = (x1 ≻ x3) ≺ x2 − x1 ≻ (x3 ≺ x2),

(x1 ≻ x2) ≻ x3 = (x1 ≻ x3) ≻ x2 + (x1 ≻ x3) ≺ x2 − (x1 ≻ x2) ≺ x3, (2.2)

(x1 ≺ x2) ≻ x3 = x1 ≺ (x2 ≻ x3) + x1 ≺ (x3 ≺ x2) + (x1 ≻ x3) ≺ x2 − (x1 ≺ x3) ≺ x2.

Remark 2.5. Novikov algebras are closely related to conformal algebras in the sense of [16].
Namely, if V is a Novikov algebra then the free k[∂]-module C = k[∂] ⊗ V equipped with
a sesqui-linear λ-product

[u(λ)v] = ∂(vu) + λ(vu+ vu), u, v ∈ V,

is a Lie conformal algebra [23]. The reason of this relation is that the expression for the gen-
eralised Poisson bracket in [2] has the same form as the expression for the commutator of local
chiral fields in [16].

Remark 2.6. The variety governed by the operad Nov ◦ Zinb is also related to conformal
algebras. It is straightforward to check that if V is an algebra over a field k, char k = 0, with
two operations ≺, ≻ satisfying the identities (2.2) then the free k[∂]-module C = k[∂] ⊗ V
equipped with a sesqui-linear λ-product(

u(λ)v
)
= ∂(v ≺ u) + λ(v ≻ u+ v ≺ u), u, v ∈ V,

is a left-symmetric conformal algebra [15]. We will explain this relation in the last section.

Let Var be a binary operad, we use the same notation for the corresponding variety of
algebras. Given an algebra A in Var, denote by Der(A) the set of all derivations of A. Recall
that a derivation of A is a linear map d : A → A such that

d(µ(a, b)) = µ(d(a), b) + µ(a, d(b)), a, b ∈ A,

for all operations µ from Var(2). For a derivation d of an algebra A, denote by A(d) the linear
space A equipped with derived operations

µ≻(a, b) = µ(d(a), b), µ≺(a, b) = µ(a, d(b)), a, b ∈ A, (2.3)

for all µ in Var(2). The variety generated by the class of systems A(d) for all A ∈ Var and
d ∈ Der(A) is denoted by DVar, the derived variety of Var. Obviously, the class of all such A(d)

is closed under direct products, so, in order to get DVar, one has to consider all homomorphic
images of all subalgebras of these A(d). In many cases, it is enough to consider just subalgebras.
The problem is to decide whether homomorphic images are actually needed.

Theorem 2.7 ([19]). For a binary operad Var, the variety DVar is governed by the operad
Nov ◦Var.
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For example, all relations that hold on every Zinbiel algebra with a derivation relative to the
operations a ≻ b = d(a)b, a ≺ b = ad(b) follow from the identities (2.2).

If Var = Com is the variety of associative and commutative algebras then DVar = Nov, as
follows from the construction of the free Novikov algebra [9]. Here we have to mention that
commutativity implies a ≻ b = b ≺ a in every algebra from DCom.

If Var = Lie then the algebras from DVar form exactly the class of all F2-algebras with one
binary operation a ≻ b = −b ≺ a [19]. Note that dimNov(n) =

(
2n−2
n−1

)
[7], and Lie(n) = (n−1)!.

Hence, dim(Nov ⊗ Lie)(n) = (2n−2)!
(n−1)! which is equal to n!Cn−1, where Cn is the nth Catalan

number. The number n!Cn−1 coincides with the nth dimension of the operad F2. Hence,
Nov ◦ Lie = Nov ⊗ Lie.

Suppose Var is a binary operad, DVar = Nov ◦ Var, DVar⟨X⟩ is the free DVar-algebra
generated by a countable set X = {x1, x2, . . . }. Denote by F = VarDer⟨X, d⟩ the free differ-
ential Var-algebra generated by X with one derivation d. Then there exists a homomorphism
τ : DVar⟨X⟩ → F (d) sending X to X identically. An element from ker τ is an identity that
holds on all Var-algebras with a derivation relative to the derived operations (2.3). Hence, τ is
injective, i.e., the free DVar-algebra can be embedded into the free differential Var-algebra.

The next question is whether every DVar-algebra can be embedded into an appropriate
differential Var-algebra. This is the same as to decide if the class of all subalgebras of A(d),
(A, d) ∈ VarDer, is closed under homomorphisms. The answer is positive for Var = Com [4],
Lie [19], Perm [18], and As [21]. In the following sections we derive a sufficient condition for Var
to guarantee a positive answer. This condition is not necessary, but we find an example when
the answer is negative.

3 The weight criterion and special derived algebras

Let Var be a binary operad. An algebra V with two binary operations ≺, ≻ from the variety
DVar is called special if it can be embedded into a Var-algebra A with a derivation d such
that u ≺ v = ud(v) and u ≻ v = d(u)v in A for all u, v ∈ V . The class of all Var-algebras
with a derivation is a variety since it is defined by identities. The free differential Var-algebra
VarDer⟨X, d⟩ generated by a set X is isomorphic as a Var-algebra to the free Var-algebra
Var

〈
X(ω)

〉
generated by the set

X(ω) =
{
x(n) | x ∈ X, n ∈ Z+

}
,

with the derivation d defined by d
(
x(n)

)
= x(n+1), x ∈ X, n ∈ Z+.

For a nonassociative monomial u ∈ X(ω) define its weight wt(u) ∈ Z as follows. For a single
letter u = x(n), set wt(u) = n − 1. If u = u1u2 then wt(u) = wt(u1) + wt(u2). Since the
defining relations of Var

〈
X(ω)

〉
are weight-homogeneous, we may define the weight function on

VarDer⟨X, d⟩. Note that if f ∈ Var
〈
X(ω)

〉
is a weight-homogeneous polynomial then wt d(f) =

wt(f) + 1.

Lemma 3.1. Let Var be a binary operad such that Nov ◦ Var = Nov ⊗ Var. Then for every
set X an element f ∈ Var

〈
X(ω)

〉
belongs to DVar⟨X⟩ if and only if wt(f) = −1.

Proof. The “only if” part of the statement does not depend on the particular operad Var.
Indeed, every formal expression in the variables X relative to binary operations ≺ and ≻ turns
into a weight-homogeneous polynomial of weight −1 in Var

〈
X(ω)

〉
.

For the “if” part, assume u is a monomial of weight −1 in the variables X(ω). In the generic
form,

u =
(
x
(s1)
i1

· · ·x(sn)in

)
, xij ∈ X, sj ≥ 0,
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with some bracketing. Here s1 + · · ·+ sn = n− 1. Consider the element

[u] = x
(s1)
1 · · ·x(sn)n ⊗ (x1 · · ·xn) ∈ Nov(n)⊗Var(n).

Here the first tensor factor is a differential commutative monomial of degree n and of weight −1
which belongs to Nov(n) by [9]. In the second factor, we put the nonassociative multi-linear
word obtained from u by removing all derivatives and consecutive re-numeration of variables
(the bracketing remains the same as in u).

By the assumption, [u] belongs to (Nov ◦ Var)(n), i.e., can be obtained from x1 ≺ x2 and

x1 ≻ x2 by compositions and symmetric groups actions. Hence, the monomial
(
x
(s1)
1 . . . x

(sn)
n

)
may be expressed in terms of operations ≻ and ≺ on the variables x1, . . . , xn ∈ X in the
differential algebra Var

〈
X(ω)

〉
. It remains to make the substitution xj → xij to get the desired

expression for u in DVar⟨X⟩. ■

Example 3.2. For example, if u = (x1(x
′′
1x2)) ∈ Lie

〈
X(ω)

〉
then [u] = x1x

′′
2x3 ⊗ (x1(x2x3)). It

is straightforward to check that [u] = x1 ≺ (x2 ≻ x3)− x2 ≻ (x1 ≺ x3)− (x1 ≺ x2) ≺ x3, where
the monomials of degree 3 represent compositions of x1 ≺ x2, x2 ≺ x1, x1 ≻ x2, x2 ≻ x1, and
id = x1 ⊗ x1 as in Example 2.4. Hence, u = x1 ≺ (x1 ≻ x2)− x1 ≻ (x1 ≺ x2)− (x1 ≺ x1) ≺ x2.

Remark 3.3. The condition

DVar⟨X⟩ =
{
f ∈ Var

〈
X(ω)

〉
| wt(f) = −1

}
for a binary operad Var implies Nov ◦Var = Nov⊗Var. Indeed, the one-to-one correspondence

x
(s1)
1 · · ·x(sn)n ⊗ (xi1 · · ·xin) ↔

(
x
(si1 )

i1
· · ·x(sin )in

)
,

∑
i

si = n− 1,

between (Nov ⊗ Var)(n) and DVar(n) preserves compositions and symmetric groups actions.

Hence, if
(
x
(si1 )

i1
· · ·x(sin )in

)
may be expressed via X in terms of operations µ≻, µ≺ (µ ∈ Var(2))

then x
(s1)
1 · · ·x(sn)n ⊗ (xi1 · · ·xin) ∈ (Nov ◦Var)(n).

Proposition 3.4. The operad Var = Nov satisfies the conditions of Lemma 3.1, i.e., Nov◦Nov =
Nov ⊗Nov.

Proof. In [7], a linear basis of the free Novikov algebra generated by an ordered set was de-
scribed in terms of partitions and Young diagrams. To prove the assertion, we will use this
basis, which consists of non-associative monomials constructed from Young diagrams with cells
properly filled with generators, see [8, Section 4] for details.

Suppose h is a non-associative monomial of degree n in Nov
〈
X(ω)

〉
of weight −1. The problem

is to show that h ∈ DNov⟨X⟩. Let us proceed by induction both on the degree of h
(
number

of letters from X(ω)
)
and on the number of “naked” letters x = x(0), x ∈ X, that appear in h.(

For brevity, letters of the form x(n) for n > 0 are called “derived”.
)

If deg h = 1 then h = x ∈ X ⊂ DNov⟨X⟩. If deg h > 1 but h contains only one “naked” letter
x ∈ X then all other letters are of the form y′i ∈ X ′ since wt(h) = −1. Then the identities of
left symmetry (1.1) and right commutativity (1.2) allow us to rewrite h as a linear combination
of nonassociative monomials with subwords of the form xy′ or y′x. The latter may be processed
in a way described below: e.g., xy′ may be replaced with a new letter (x ≺ y) so that we get
words of smaller degree in the extended alphabet.

Case 1. If the monomial h has a subword a(k)b or ab(k) for some a, b ∈ X and k ≥ 1, then we
may transform h to an expression in the extended alphabet (adding a new letter a ≻ b to X) as

a(k)b = (a ≻ b)(k−1) −
∑
s≥1

(
k − 1

s

)
a(k−s)b(s),
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or, similarly, for ab(k). The expression in the right-hand side contains monomials either of smaller
degree or with a smaller number of “naked” letters. Hence, h ∈ DNov⟨X⟩.

Case 2. For the general case, we need to recall the description of a linear basis of the free
Novikov algebra (see [7, 8, 9]). Suppose X(ω) is linearly ordered in such a way that every “naked”
letter is smaller than every derived one.

Every element of Nov
〈
X(ω)

〉
may be presented as a linear combination of non-associative

words of the form

h = (· · · (W1W2) · · ·Wk−1)Wk, (3.1)

where W1 = a1,r1+1(a1,r1(· · · (a1,2a1,1) · · · )), Wl = al,rl(al,rl−1(· · · (al,2al,1) · · · )), l = 2, . . . , k,
r1 ≥ r2 ≥ · · · ≥ rk, ai,j ∈ X(ω). The letters are ordered in such a way that the following
conditions hold:

� If ri = ri+1 then ai,1 ≥ ai+1,1 for i = 1, . . . , k − 1;

� a1,r1+1 ≥ a1,r1 ≥ · · · ≥ a1,2 ≥ a2,r2 ≥ · · · ≥ a2,2 ≥ · · · ≥ ak−1,2 ≥ ak,rk ≥ · · · ≥ ak,2.

In particular, if at least one of the words W = Wl contains both “naked” and derived letters
then there are two options: (i) the last letter al,1 is a derived one; (ii) al,1 is “naked”. In the
first case, the final subword (al,2al,1) of W is of the form considered in Case 1 since al,2 has to
be “naked” due to the choice of order on X(ω). In the second case, we may find a suffix of W
which is of the following form:

y(n)(x1(x2 · · · (xs−1xs) · · · )), xi, y ∈ X, n > 0.

An easy induction on s ≥ 1 shows that the suffix may be transformed (by means of left symmetry)
to a sum of monomials considered in Case 1.

Hence, it remains to consider the case when each Wl contains either only “naked” letters or
only derived ones. Due to the ordering of letters in X(ω), the word h of the form (3.1) has the
following property: there exists 1 ≤ l < k such that all Wi for i ≤ l consist of only derived letters
and for i > l all Wi are nonassociative words in “naked” letters. Then use right-commutativity
to transform h to the form h = (· · · ((· · · ((W1Wl+1)W2) · · ·Wl)Wl+2) · · ·Wk). Here W1 = y(n)u,
n > 0, u consists of derived letters, Wl+1 = xv, x ∈ X, v consists of “naked” letters. The
subword W1Wl+1 may be transformed to

(
y(n)(xv)

)
u, n > 0, by right commutativity, and its

prefix y(n)(xv) transforms (by induction on deg v) to a form described in Case 1 by left symmetry:

y(n)(xv) =
(
y(n)x

)
v −

(
xy(n)

)
v + x

(
y(n)v

)
. ■

Theorem 3.5. If Var is a binary operad such that Var ◦ Nov = Var ⊗ Nov then every DVar-
algebra is special.

Proof. Suppose V is a DVar-algebra. Then V may be presented as a quotient of a free algebra
DVar⟨X⟩ modulo an ideal I. Consider the embedding DVar⟨X⟩ ⊂ Var

〈
X(ω)

〉
and denote by J

the differential ideal of Var
〈
X(ω)

〉
generated by I. Then U = Var

〈
X(ω)

〉
/J is the universal

enveloping differential Var-algebra of V . It remains to prove that J ∩ DVar⟨X⟩ = I, namely,
the “⊆” part is not a trivial one.

Assume f ∈ J . Then there exists a family of (differential) polynomials Φi ∈ Var
〈
(X∪{t})(ω)

〉
such that f =

∑
iΦi|t=gi , for some gi ∈ I. If, in addition, f ∈ DVar⟨X⟩ then wt(f) = −1. Since

wt gi = −1, we should have wtΦi = −1 for all i. By Lemma 3.1, every polynomial Φi may be
represented as an element of DVar⟨X ∪ {t}⟩, so Φi|t=gi ∈ I for all i, and thus f ∈ I. ■

Corollary 3.6. Every DNov-algebra V with operations ≻ and ≺ can be embedded into a commu-
tative algebra with two commuting derivations d and ∂ so that x ≻ y = ∂(x)d(y), x ≺ y = x∂d(y)
for all x, y ∈ V .
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Proof. For a free DNov-algebra generated by a set X, we have the following chain of inclusions
given by Proposition 3.4:

DNov⟨X⟩ ⊂ NovDer⟨X, ∂⟩ = Nov
〈
X(ω)

〉
⊂ ComDer

〈
X(ω), d

〉
= Com

〈
X(ω,ω)

〉
.

Here X(ω,ω) =
(
X(ω)

)(ω)
=

{
x(n,m) | x ∈ X,n,m ∈ Z+

}
, a variable x(n,m) represents dn∂m(x).

The elements of DNov⟨X⟩ are exactly those polynomials in Com
〈
X(ω,ω)

〉
that can be presented

as linear combinations of monomials

x
(n1,m1)
1 · · ·x(nk,mk)

k ,
∑
i

ni =
∑
i

mi = k + 1.

The same arguments as in the proof of Theorem 3.5 imply the claim. ■

Apart from the operads Com and Lie considered above, the operads Pois and As governing
the varieties of Poisson and associative algebras, respectively, also satisfy the conditions of
Theorem 3.5 [19, 21]. However, even if Nov ◦Var ̸= Nov⊗Var then it is still possible that every
DVar-algebra is special. For example, if Var = Jord is the variety of Jordan algebras then the
corresponding operad is not quadratic and, in particular, the element [u] = x1x

′
2x

′
3⊗x1(x2x3) ∈

Nov(3) ⊗ Jord(3) does not belong to (Nov ◦ Jord)(3). The operad Nov ◦ Jord is generated by
a single operation x1 ≻ x2 = x2 ≺ x1 due to commutativity of Jord. Hence, Nov ◦ Jord is
a homomorphic image of the free operad F2. On the other hand, we have

Proposition 3.7. For every non-associative algebra V with a multiplication ν : V ⊗ V → V
there exists an associative algebra (A, ·) with a derivation d such that V ⊆ A and ν(u, v) =
d(u) · v + v · d(u) for all u, v ∈ V .

In other words, we are going to show that every non-associative algebra V embeds into the
derived anti-commutator algebra

(
A(+)

)(d)
for an appropriate associative differential algebra

(A, d).

Proof. Let us choose a linear basis B of V equipped with an arbitrary total order ≤ such that
(B,≤) is a well-ordered set. Then define F to be the free associative algebra generated by B(ω).
Induce the order ≤ on B(ω) by the following rule:

a(n) ≤ b(m) ⇐⇒ (n, a) ≤ (m, b) lexicographically,

and expand it to the words in B(ω) by the deg-lex rule (first by length, then lexicographically).

Consider the set of defining relations

S =

{
a(n)b+

∑
s≥1

(
n− 1

s

)(
a(n−s)b(s) + b(s)a(n−s)

)
+ ba(n) − ν(a, b)(n−1) | a, b ∈ B,n ≥ 1

}
.

All relations in the set S are obtained from a′b+ba′−ν(a, b) by formal derivation d : x(s) → x(s+1),
x(s) ∈ B(ω). Hence, A = F/(S) is a differential associative algebra, and the map φ : V → A(+),
φ(v) = v + (S), v ∈ V , preserves the operation, i.e., φ(ν(u, v)) = d(φ(u)) · φ(v) + φ(v) · d(φ(u))
for all u, v ∈ V .

The principal parts of f ∈ S relative to the order ≤ are a(n)b, a, b ∈ B, n ≥ 1. These words
have no compositions of inclusion or intersection, hence, S is a Gröbner–Shirshov basis in F and
the images of all variables from B are linearly independent in A since they are S-reduced (see,
e.g., [3] for the definitions). Therefore, φ : V → A(+) is the desired embedding. ■



10 P. Kolesnikov, F. Mashurov and B. Sartayev

Consider the variety SJord generated by all special Jordan algebras (i.e., embeddable into
associative ones with respect to the anti-commutator). In particular, for every associative al-
gebra (A, ·) with a derivation d the same space A equipped with a new operation ν(u, v) =
d(u) · v+ v ·d(u), u, v ∈ A, is an algebra from DSJord. Proposition 3.7 implies that there are no
identities that hold for the binary operation ν like that. Hence, the varieties DSJord = DJord
coincide with the variety of all nonassociative algebras with one operation. However, again from
Proposition 3.7 every DJord-algebra embeds into an appropriate Jordan algebra (even a special
Jordan algebra) with a derivation.

In the next section, we find an example of a variety Var for which the embedding statement
fails.

4 Dendriform splitting and a non-special pre-Novikov algebra

Another example of a variety Var not satisfying the conditions of Theorem 3.5 is the class Zinb of
Zinbiel (dual Leibniz or pre-commutative) algebras. This is a particular case of the dendriform
splitting of a binary operad described in [1, 13]. Namely, if Var is a variety of algebras with (one
or more) binary operation µ(x, y) = xy satisfying a family of multi-linear identities Σ then preVar
is a variety of algebras with duplicated set of binary operations µ⊢(x, y) = x ⊢ y, µ⊣(x, y) = x ⊣ y
satisfying a set of identities preΣ defined as follows. Assume f = f(x1, . . . , xn) is a multi-linear
polynomial of degree ≤ n, and let k ∈ {1, . . . , n}. Suppose u is a nonassociative monomial in the
variables x1, . . . , xn such that each xi appears in u no more than once. Define a polynomial u[k]

in x1, . . . , xn relative to the operations µ⊢, µ⊣ by induction on the degree. If u = xi then
u[k] = xi; if u = vw and xk appears in v (or in w) then u[k] = v[k] ⊣ w[k] (or, respectively,
v[k] ⊢ w[k]); if xk does not appear in u then set u[k] = v[k] ⊣ w[k]+ v[k] ⊢ w[k]. Transforming each
monomial u in the multi-linear polynomial f in this way, we get f [k](x1, . . . , xn). The collection
of all such f [k] for f ∈ Σ, k = 1, . . . ,deg f , forms the set of defining relations of a new variety
denoted preVar.

For example, for f(x1, x2, x3) = (x1x2)x3 − x1(x2x3) the polynomials f [k], k = 1, 2, 3, are
given by

f [1] = (x1 ⊣ x2) ⊣ x3 − x1 ⊣ (x2 ⊣ x3 + x2 ⊢ x3),

f [2] = (x1 ⊢ x2) ⊣ x3 − x1 ⊢ (x2 ⊣ x3),

f [3] = (x1 ⊢ x2 + x1 ⊣ x2) ⊢ x3 − x1 ⊢ (x2 ⊢ x3). (4.1)

These identities define the variety of pre-associative or dendriform algebras [20].
If the initial operation was commutative or anti-commutative then the set of identities preΣ

includes x1 ⊢ x2 = ±x2 ⊣ x1, so the operations in preVar are actually expressed via µ⊢ or µ⊣. For
example, Var = Lie produces the variety preLie of left- or right-symmetric algebras (depending
on the choice of ⊢ or ⊣). If Var = Com then, in terms of the operation x · y = x ⊣ y = y ⊢ x, all
three identities (4.1) of pre-associative algebras are equivalent to (2.1).

In a similar way, one may derive the identities of a preNov-algebra by means of the dendriform
splitting applied to (1.1) and (1.2). Routine simplification leads us to the following definition:
a preNov-algebra is a linear space with two bilinear operations ⊢, ⊣ satisfying

(x1 ⊣ x2) ⊣ x3 = (x1 ⊣ x3) ⊣ x2,

(x1 ⊢ x2) ⊣ x3 = (x1 ⊢ x3) ⊢ x2 + (x1 ⊣ x3) ⊢ x2,

(x1 ⊣ x2) ⊣ x3 − x1 ⊣ (x2 ⊣ x3)− x1 ⊣ (x2 ⊢ x3) = (x2 ⊢ x1) ⊣ x3 − x2 ⊢ (x1 ⊣ x3),

(x1 ⊢ x3) ⊣ x2 − x1 ⊢ (x2 ⊢ x3) = (x2 ⊢ x3) ⊣ x1 − x2 ⊢ (x1 ⊢ x3). (4.2)

The formal change of operations x ⊣ y = x ≺ y, x ⊢ y = y ≻ x turns (4.2) exactly into (2.2).
Hence, the operad preNov = preDCom defines the same class of algebras as DZinb = DpreCom.
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Remark 4.1. This is not hard to compute that preDLie = DpreLie and preDAs = DpreAs. In
general, for every binary operad Var there exists a morphism of operads preDVar → DpreVar
(i.e., every DpreVar-algebra is a preDVar-algebra). We do not know an example when this
morphism is not an isomorphism, i.e., when the operations pre and D applied to a binary
operad do not commute.

An equivalent way to define the variety preVar was proposed in [13]. Let Perm stand for the
variety of associative algebras that satisfy left commutativity

x1x2x3 = x2x1x3.

An algebra V with two operations ⊣, ⊢ is a preVar-algebra if and only if for every P ∈ Perm
the space P ⊗ V equipped with the single operation

(p⊗ u)(q ⊗ v) = pq ⊗ (u ⊢ v) + qp⊗ (u ⊣ v), p, q ∈ P, u, v ∈ V, (4.3)

is a Var-algebra. The same statement holds in the case when the binary operad Var is generated
by several operations.

Remark 4.2. For an arbitrary binary operad, there is a morphism of operads ζ : preVar →
Zinb ◦ Var. Namely, for every A ∈ Var and for every Z ∈ Zinb the space Z ⊗ A equipped with
two operations

(z ⊗ a) ⊢ (w ⊗ b) = (w · z)⊗ ab, (z ⊗ a) ⊣ (w ⊗ b) = (z · w)⊗ ab,

for z, w ∈ Z, a, b ∈ A, is a preVar-algebra.

However, preVar and Zinb◦Var are not necessarily isomorphic. For example, if Var is defined
by the identity (x1 · x2) · x3 = 0 then the kernel of ζ is nonzero.

As a corollary, we obtain

Proposition 4.3. The operad preNov is isomorphic to the Manin white product Zinb ◦Nov.

Remark 4.4. Let V be a DZinb-algebra. In terms of pre-Novikov operations ⊣ and ⊢, the
conformal algebra structure mentioned in Remark 2.6 is expressed as

(u(λ)v) = ∂(v ⊣ u) + λ(u ⊢ v + v ⊣ u), u, v ∈ V.

This is indeed a left-symmetric conformal algebra which is easy to check via the conformal
analogue of (4.3). By slight abuse of notations, for every Perm-algebra P the operation

[(p⊗ u)(λ)(q ⊗ v)] = pq ⊗ (u(λ)v)− qp⊗ (v(−∂−λ)u)

= pq ⊗ (∂(v ⊣ u) + λ(u ⊢ v + v ⊣ u))− qp⊗ (∂(u ⊣ v)− (λ+ ∂)(v ⊢ u+ u ⊣ v))

= ∂(qp⊗ v ⊢ u+ pq ⊗ v ⊣ u) + λ(pq ⊗ u ⊢ v + qp⊗ u ⊣ v + qp⊗ v ⊢ u+ pq ⊗ v ⊣ u)

is exactly the quadratic Lie conformal algebra structure [23] on k[∂]⊗ P ⊗ V corresponding to
the Novikov algebra P ⊗ V :

[x(λ)y] = ∂(yx) + λ(xy + yx)

for x = p⊗ u, y = q ⊗ v, and the product is given by (4.3).

Hence the construction of a preLie conformal algebra from a DZinb-algebra is a quite clear
consequence of the commutativity of tensor product.
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The final statement of this section shows a substantial difference between the properties of
Novikov algebras and preNov-algebras. Although the defining identities of preNov are exactly
those that hold on differential Zinbiel algebras with operations (2.3) (i.e., the dendriform ana-
logue of [9, Theorem 7.8] holds), the general embedding statement (i.e., the dendriform analogue
of [4, Theorem 3]) turns to be wrong.

Theorem 4.5. If the characteristic of the base field k is not 2 or 3 then there exists a DZinb-
algebra which cannot be embedded into a differential Zinbiel algebra.

Proof. Consider the free Zinbiel algebra F generated by

{a, b}(ω) =
{
a, b, a′, b′, . . . , a(n), b(n), . . .

}
.

This is the free differential Zinbiel algebra with two generators a, b, its derivation d maps x(n)

to x(n+1) for x ∈ {a, b}. The product of two elements f, g ∈ F is denoted f · g.
For every f, g ∈ F , define f ≺ g, f ≻ g by the rule (2.3):

f ≺ g = f · d(g), f ≻ g = d(f) · g.

Then (F,≺,≻) is a DZinb-algebra, and its subalgebra generated by a, b is isomorphic to the
free algebra DZinb⟨a, b⟩.

Denote f = b ≺ b = b · b′ ∈ DZinb⟨a, b⟩ ⊂ F , and let J stand for the ideal in F generated
by f and all its derivatives:

J =
(
f, f ′, f ′′, . . .

)
◁ F, d(J) ⊆ J.

In particular,

h = a ·
(
f ′ · b′

)
− a ·

(
f · b′′

)
∈ J.

Let us show that h ∈ DZinb⟨a, b⟩ ⊂ J . Indeed,

h = a ·
((
b · b′

)′ · b′)− a ·
((
b · b′

)
· b′′

)
= a ·

((
b′ · b′

)
· b′

)
+ a ·

((
b · b′′

)
· b′

)
− a ·

((
b · b′

)
· b′′

)
= a ·

((
b′ · b′

)
· b′

)
due to the right commutativity of Zinbiel algebras. Next, (b′ · b′) · b′ = 2b′ · (b′ · b′), so (b′ · b′) ·
b′ + b′ · (b′ · b′) = 3

2(b
′ · b′) · b′. Therefore,

h = a ·
((
b′ · b′

)
· b′

)
=

2

3
a ·

((
b′ · b′

)
· b′ + b′ ·

(
b′ · b′

))
=

2

3

(
a ·

(
b′ · b′

))
· b′

=
1

3

((
a · b′

)
· b′

)
· b′ = 1

3
((a ≺ b) ≺ b) ≺ b = 2

[
ab′b′b′

]
∈ DZinb⟨a, b⟩.

As in Example 2.3, we denote by [x1x2 · · ·xn−1xn] the following expression in a Zinbiel algebra:

[x1x2 · · ·xn−1xn] = x1 · (x2 · (· · · (xn−1 · xn) · · · )).

Recall [20] that all such expressions with xi from a set X form a linear basis of the free Zinbiel
algebra generated by X (i.e., this is a normal form in preCom⟨X⟩).

Let I be the ideal inDZinb⟨a, b⟩ generated by f , and let V = DZinb⟨a, b | f⟩ = DZinb⟨a, b⟩/I.
Then F/J is the universal differential Zinbiel envelope of V . To prove the theorem, it remains
to show that h /∈ I: if so then h+ I would lie in the kernel of every homomorphism from V to
the derived algebra Z(d) constructed from a differential Zinbiel algebra Z with a derivation d.

Assume [ab′b′b′] ∈ I. The specific of the Zinbiel identity (2.1) is that the first letter remains
unchanged in all terms. Hence, [ab′b′b′] should be a linear combination of the elements (a∗f ⋆b),
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(a ∗ b ⋆ f), where ∗, ⋆ ∈ {≺,≻}, with two possible bracketing each, so we have in total 16 terms
under consideration. Let us write them all in the normal form in F :

(a ≺ f) ≺ b = 3
[
ab′b′b′

]
+
[
ab′bb′′

]
+
[
abb′b′′

]
+

[
abb′′b′

]
,

(a ≺ f) ≻ b =
[
a′bb′b′

]
+
[
a′b′bb′

]
+
[
a′b′b′b

]
+ 2

[
a′bbb′′

]
+
[
a′bb′′b

]
+
[
abb′′b′

]
+
[
ab′′bb′

]
+
[
ab′′b′b

]
+ 2

[
abb′b′′

]
+ 2

[
ab′bb′′

]
+ 2

[
ab′b′′b

]
+ 2

[
abbb′′′

]
+
[
abb′′′b

]
,

(a ≻ f) ≺ b =
[
a′b′bb′

]
+ 2

[
a′bb′b′

]
,

(a ≻ f) ≻ b = 2
[
a′′bbb′

]
+
[
a′′bb′b

]
+
[
a′bb′b′

]
+
[
a′b′bb′

]
+
[
a′b′b′b

]
+ 2

[
a′bbb′′

]
+
[
a′bb′′b

]
,

a ≺ (f ≺ b) = 2
[
ab′b′b′

]
+ 2

[
abb′′b′

]
+ 2

[
abb′b′′

]
,

a ≺ (f ≻ b) = a
[
b′b′b

]′
+ a

[
b′bb′

]′
+ a

[
bb′′b

]′
+ a

[
bbb′′

]′
=

[
ab′′b′b

]
+ 2

[
ab′b′′b

]
+ 2

[
ab′b′b′

]
+
[
ab′′bb′

]
+ 2

[
ab′bb′′

]
+
[
abb′′′b

]
+
[
abb′′b′

]
+
[
abb′b′′

]
+
[
abbb′′′

]
,

a ≻ (f ≺ b) = 2
[
a′bb′b′

]
,

a ≻ (f ≻ b) =
[
a′b′b′b

]
+
[
a′b′bb′

]
+

[
a′bb′′b

]
+
[
a′bbb′′

]
,

(a ≺ b) ≺ f = 3
[
ab′b′b′

]
+
[
ab′bb′′

]
+
[
abb′b′′

]
+
[
abb′′b′

]
,

(a ≺ b) ≻ f =
[
a′b′bb′

]
+ 2

[
a′bb′b′

]
+
[
ab′′bb′

]
+
[
abb′′b′

]
+
[
abb′b′′

]
,

(a ≻ b) ≺ f =
[
a′bb′b′

]
+
[
a′b′bb′

]
+
[
a′b′b′b

]
+ 2

[
a′bbb′′

]
+
[
a′bb′′b

]
,

(a ≻ b) ≻ f = 2
[
a′′bbb′

]
+
[
a′′bb′b

]
+
[
a′b′bb′

]
+ 2

[
a′bb′b′

]
,

a ≺ (b ≺ f) =
[
ab′b′b′

]
+
[
abb′′b′

]
+ 2

[
abb′b′′

]
+
[
ab′bb′′

]
+
[
abbb′′′

]
,

a ≺ (b ≻ f) =
[
ab′′bb′

]
+
[
ab′b′b′

]
+
[
ab′bb′′

]
,

a ≻ (b ≺ f) =
[
a′bb′b′

]
+
[
a′bbb′′

]
,

a ≻ (b ≻ f) =
[
a′b′bb′

]
.

Arrange the normal Zinbiel words in the following order: [ab′b′b′], [ab′bb′′], [abb′b′′], [abb′′b′],
[ab′′bb′], [ab′′b′b], [ab′b′′b], [abbb′′′], [abb′′′b], [a′′bb′b], [a′′bbb′], [a′bb′b′], [a′b′bb′], [a′b′b′b], [a′bbb′′],
[a′bb′′b]. Then the assumption [ab′b′b′] ∈ I is equivalent to the condition that the row vector
e1 = (1, 0, . . . , 0) ∈ k16 belongs to the row space of the matrix

3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 2 2 1 1 1 2 2 1 0 0 1 1 1 2 1
0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 0 0 0 1 2 1 1 1 2 1
2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 1 1 2 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1
0 0 0 0 0 0 0 0 0 1 2 2 1 0 0 0
1 1 2 1 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0



.

This matrix may be transformed by elementary row and column transformations with integer
coefficients to the triangular form with 1, 2, or 0 on the diagonal, so that its rank equals 10 for
char k ̸= 2. Adding one more row e1 increases the rank, so [ab′b′b′] /∈ I. ■
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As a corollary, we obtain the following observation which is in some sense converse to Corol-
lary 3.6. Suppose W is a Novikov algebra equipped with a Rota–Baxter operator, that is,
R : W → W is a linear operator such that

R(u)R(v) = R(uR(v) +R(u)v), u, v ∈ W.

Then, in general, there is no commutative algebra (A, ∗) with a derivation d and a Rota–Baxter
operator ρ such that W ⊆ A, uv = u ∗ d(v), R(u) = ρ(u), for u, v ∈ W , and ρd = dρ. In other
words, a Novikov Rota–Baxter algebra cannot be in general embedded into a commutative
Rota–Baxter algebra with a derivation.

Indeed, assume such a system (A, ∗, d, ρ) exists for every Novikov algebra with a Rota–Baxter
operator. Every pre-Novikov algebra V with operations ⊢ and ⊣ can be embedded into a Novikov
algebra W = V̂ with a Rota–Baxter operator so that u ⊢ v = R(u)v, u ⊣ v = uR(v), u, v ∈ V
(see, e.g., [13]). We may further embed this W into a differential commutative Rota–Baxter
algebra (A, ∗, d, ρ) in which a ⊢ b = ρ(a) ∗ d(b), a ⊣ b = a ∗ d(ρ(b)) = a ∗ ρ(d(b)), for a, b ∈ W .
On the other hand, the new operation · on A given by a · b = a ∗ ρ(b) turns A into a Zinbiel
algebra, d remains a derivation relative to this new operation, and u ⊢ v = d(v) · u = v ≻ u,
u ⊣ v = u · d(v) = u ≺ v for u, v ∈ V . Therefore, we would embed a DZinb-algebra into
a differential Zinbiel algebra which is not the case.
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