Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 015, 27 pages      arXiv:2211.01247      https://doi.org/10.3842/SIGMA.2024.015
Contribution to the Special Issue on Symmetry, Invariants, and their Applications in honor of Peter J. Olver

Superposition Formulae for the Geometric Bäcklund Transformations of the Hyperbolic and Elliptic Sine-Gordon and Sinh-Gordon Equations

Filipe Kelmer and Keti Tenenblat
Department of Mathematics, Universidade de Brasília, Brazil

Received August 10, 2023, in final form February 03, 2024; Published online February 15, 2024

Abstract
We provide superposition formulae for the six cases of Bäcklund transformations corresponding to space-like and time-like surfaces in the 3-dimensional pseudo-Euclidean space. In each case, the surfaces have constant negative or positive Gaussian curvature and they correspond to solutions of one of the following equations: the sine-Gordon, the sinh-Gordon, the elliptic sine-Gordon and the elliptic sinh-Gordon equation. The superposition formulae provide infinitely many solutions algebraically after the first integration of the Bäcklund transformation. Such transformations and the corresponding superposition formulae provide solutions of the same hyperbolic equation, while they show an unusual property for the elliptic equations. The Bäcklund transformation alternates solutions of the elliptic sinh-Gordon equation with those of the elliptic sine-Gordon equation and the superposition formulae provide solutions of the same elliptic equation. Explicit examples and illustrations are given.

Key words: superposition formulae; Bäcklund transformation; sine-Gordon equation; sinh-Gordon equation; elliptic sine-Gordon; elliptic sinh-Gordon.

pdf (22722 kb)   tex (21747 kb)  

References

  1. Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., Nonlinear-evolution equations of physical significance, Phys. Rev. Lett. 31 (1973), 125-127.
  2. Bäcklund A.V., Einiges über Curve und Flächentransformationen, Lund. Univ. Årsskr. 10 (1874), 1-12.
  3. Bäcklund A.V., Concerning surfaces with constant negative curvature, New Era Printing Co., Lancaster, 1905.
  4. Barbosa J.L., Ferreira W., Tenenblat K., Submanifolds of constant sectional curvature in pseudo-Riemannian manifolds, Ann. Global Anal. Geom. 14 (1996), 381-401.
  5. Beals R., Tenenblat K., An intrinsic generalization for the wave and sine-Gordon equations, in Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., Vol. 52, Longman Scientific & Technical, Harlow, 1991, 25-46.
  6. Bianchi L., Sulla transformazione di Bäcklund per le superficie pseudosferiche, Rend. Acc. Naz. Lincei 1 (1892), 3-13.
  7. Campos P.T., Bäcklund transformations for the generalized Laplace and elliptic sinh-Gordon equations, An. Acad. Bras. Ciênc. 66 (1994), 405-411.
  8. Campos P.T., Tenenblat K., Bäcklund transformations for a class of systems of differential equations, Geom. Funct. Anal. 4 (1994), 270-287.
  9. Chen Q., Zuo D., Cheng Y., Isometric immersions of pseudo-Riemannian space forms, J. Geom. Phys. 52 (2004), 241-262.
  10. Clelland J.N., Totally quasi-umbilic timelike surfaces in ${\mathbb R}^{1,2}$, Asian J. Math. 16 (2012), 189-208, arXiv:1006.4380.
  11. Dajczer M., Tojeiro R., Isometric immersions and the generalized Laplace and elliptic sinh-Gordon equations, J. Reine Angew. Math. 467 (1995), 109-147.
  12. Fokas A.S., Lenells J., Pelloni B., Boundary value problems for the elliptic sine-Gordon equation in a semi-strip, J. Nonlinear Sci. 23 (2013), 241-282, arXiv:0912.1758.
  13. Gu C.H., Hu H.S., Inoguchi J.-I., On time-like surfaces of positive constant Gaussian curvature and imaginary principal curvatures, J. Geom. Phys. 41 (2002), 296-311.
  14. Gutshabash E.S., Lipovskii V.D., A boundary value problem for a two-dimensional elliptic sine-Gordon equation and its application to the theory of the stationary Josephson effect, J. Math. Sci. 68 (1994), 197-201.
  15. Jaworski M., Kaup D., Direct and inverse scattering problem associated with the elliptic sinh-Gordon equation, Inverse Problems 6 (1990), 543-556.
  16. Kelmer F., Rodrigues L.A., Tenenblat K., A unified approach to Bäcklund type theorems for surfaces in 3-dimensional pseudo-euclidean space, Mat. Contemp. 49 (2022), 140-170.
  17. McNertney L.V., One-parameter families of surfaces with constant curvature in Lorentz 3-space, Ph.D. Thesis, Brown University, 1980.
  18. Palmer B., Bäcklund transformations for surfaces in Minkowski space, J. Math. Phys. 31 (1990), 2872-2875.
  19. Pelloni B., Spectral analysis of the elliptic sine-Gordon equation in the quarter plane, Theoret. and Math. Phys. 160 (2009), 1031-1041.
  20. Tenenblat K., Bäcklund's theorem for submanifolds of space forms and a generalized wave equation, Bol. Soc. Brasil. Mat. 16 (1985), 69-94.
  21. Tenenblat K., Transformations of manifolds and applications to differential equations, Pitman Monogr. and Surv. in Pure and Appl. Math., Vol. 93, Longman, Harlow, 1998.
  22. Tenenblat K., Terng C.L., Bäcklund's theorem for $n$-dimensional submanifolds of ${\mathbf R}^{2n-1}$, Ann. of Math. 111 (1980), 477-490.
  23. Terng C.L., A higher dimension generalization of the sine-Gordon equation and its soliton theory, Ann. of Math. 111 (1980), 491-510.
  24. Tian C., Bäcklund transformation on surfaces with $K=-1$ in ${\mathbb R}^{2,1}$, J. Geom. Phys. 22 (1997), 212-218.

Previous article  Next article  Contents of Volume 20 (2024)