|
SIGMA 20 (2024), 010, 34 pages arXiv:2303.04013
https://doi.org/10.3842/SIGMA.2024.010
Contribution to the Special Issue on Differential Geometry Inspired by Mathematical Physics in honor of Jean-Pierre Bourguignon for his 75th birthday
A Pseudodifferential Analytic Perspective on Getzler's Rescaling
Georges Habib ab and Sylvie Paycha c
a) Department of Mathematics, Faculty of Sciences II, Lebanese University, P.O. Box, 90656 Fanar-Matn, Lebanon
b) Université de Lorraine, CNRS, IECL, France
c) Institut für Mathematik, Universität Potsdam, Campus Golm, Haus 9, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
Received March 08, 2023, in final form January 11, 2024; Published online January 30, 2024
Abstract
Inspired by Gilkey's invariance theory, Getzler's rescaling method and Scott's approach to the index via Wodzicki residues, we give a localisation formula for the $\mathbb Z_2$-graded Wodzicki residue of the logarithm of a class of differential operators acting on sections of a spinor bundle over an even-dimensional manifold. This formula is expressed in terms of another local density built from the symbol of the logarithm of a limit of rescaled differential operators acting on differential forms. When applied to complex powers of the square of a Dirac operator, it amounts to expressing the index of a Dirac operator in terms of a local density involving the logarithm of the Getzler rescaled limit of its square.
Key words: index; Dirac operator; Wodzicki residue; spinor bundle.
pdf (653 kb)
tex (41 kb)
References
- Ammann B., Grosjean J.F., Humbert E., Morel B., A spinorial analogue of Aubin's inequality, Math. Z. 260 (2008), 127-151, arXiv:math.DG/0308107.
- Atiyah M., Bott R., Patodi V.K., On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330.
- Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren Text Ed., Springer, Berlin, 2004.
- Bourguignon J.-P., Hijazi O., Milhorat J.-L., Moroianu A., Moroianu S., A spinorial approach to Riemannian and conformal geometry, EMS Monogr. Math., European Mathematical Society (EMS), Zürich, 2015.
- Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
- Debord C., Skandalis G., Adiabatic groupoid, crossed product by $\mathbb{R}_+^\ast$ and pseudodifferential calculus, Adv. Math. 257 (2014), 66-91, arXiv:1307.6320.
- Debord C., Skandalis G., Blow-up constructions for Lie groupoids and a Boutet de Monvel type calculus, Münster J. Math. 14 (2021), 1-40, arXiv:1705.09588.
- Epstein D.B.A., Natural tensors on Riemannian manifolds, J. Differential Geometry 10 (1975), 631-645.
- Freed D., Lectures on Dirac operators, Unpublished notes, 1987, available at https://web.ma.utexas.edu/users/dafr/DiracNotes.pdf.
- Getzler E., A short proof of the local Atiyah-Singer index theorem, Topology 25 (1986), 111-117.
- Gilkey P.B., Invariance theory, the heat equation, and the Atiyah-Singer index theorem, 2nd ed., Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995.
- Higson N., The tangent groupoid and the index theorem, in Quanta of Maths, Clay Math. Proc., Vol. 11, American Mathematical Society, Providence, RI, 2010, 241-256.
- Higson N., Yi Z., Spinors and the tangent groupoid, Doc. Math. 24 (2019), 1677-1720, arXiv:1902.08351.
- Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1989.
- Mickelsson J., Paycha S., The logarithmic residue density of a generalized Laplacian, J. Aust. Math. Soc. 90 (2011), 53-80, arXiv:1008.3039.
- Scott S., Traces and determinants of pseudodifferential operators, Oxford Math. Monogr., Oxford University Press, Oxford, 2010.
- Shubin M.A., Pseudo-differential operators and spectral theory, Springer, Berlin, 2001.
- van Erp E., Yuncken R., A groupoid approach to pseudodifferential calculi, J. Reine Angew. Math. 756 (2019), 151-182, arXiv:1511.01041.
- Wodzicki M., Noncommutative residue. I. Fundamentals, in $K$-theory, Arithmetic and Geometry (Moscow, 1984-1986), Lecture Notes in Math., Vol. 1289, Springer, Berlin, 1987, 320-399.
|
|