Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 002, 18 pages      arXiv:2306.13175      https://doi.org/10.3842/SIGMA.2024.002
Contribution to the Special Issue on Symmetry, Invariants, and their Applications in honor of Peter J. Olver

Computation of Infinitesimals for a Group Action on a Multispace of One Independent Variable

Peter Rock
Department of Mathematics, University of Colorado Boulder, 395 UCB, Boulder, CO 80309, USA

Received July 04, 2023, in final form December 29, 2023; Published online January 02, 2024

Abstract
This paper expands upon the work of Peter Olver's paper [Appl. Algebra Engrg. Comm. Comput. 11 (2001), 417-436], wherein Olver uses a moving frames approach to examine the action of a group on a curve within a generalization of jet space known as multispace. Here we seek to further study group actions on the multispace of curves by computing the infinitesimals for a given action. For the most part, we proceed formally, and produce in the multispace a recursion relation that closely mimics the previously known prolongation recursion relations for infinitesimals of a group action on jet space.

Key words: jet space; multispace; symmetry methods; differential equations; numerical ordinary differential equations.

pdf (452 kb)   tex (24 kb)  

References

  1. de Boor C., Divided differences, Surv. Approx. Theory 1 (2005), 46-69, arXiv:math.CA/0502036.
  2. Dorodnitsyn V., Noether-type theorems for difference equations, Appl. Numer. Math. 39 (2001), 307-321.
  3. Dorodnitsyn V., Kaptsov E., Invariant finite-difference schemes for plane one-dimensional MHD flows that preserve conservation laws, Mathematics 10 (2022), 1250, 24 pages, arXiv:2112.03118.
  4. Dorodnitsyn V., Kaptsov E., Kozlov R., Winternitz P., First integrals of ordinary difference equations beyond Lagrangian methods, arXiv:1311.1597.
  5. Fels M., Olver P.J., Moving coframes. I. A practical algorithm, Acta Appl. Math. 51 (1998), 161-213.
  6. Fels M., Olver P.J., Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), 127-208.
  7. Kellison S.G., Fundamentals of numerical analysis, Richard D. Irwin, Inc., 1975.
  8. Mansfield E.L., A practical guide to the invariant calculus, Cambridge Monogr. Appl. Comput. Math., Vol. 26, Cambridge University Press, Cambridge, 2010.
  9. Mansfield E.L., Rojo-Echeburúa A., Hydon P.E., Peng L., Moving frames and Noether's finite difference conservation laws I, Trans. Math. Appl. 3 (2019), tnz004, 47 pages, arXiv:1804.00317.
  10. Mansfield E.L., Rojo-Echeburúa A., Moving frames and Noether's finite difference conservation laws II, Trans. Math. Appl. 3 (2019), tnz005, 26 pages, arXiv:1808.03606.
  11. Marí Beffa G., Mansfield E.L., Discrete moving frames on lattice varieties and lattice-based multispaces, Found. Comput. Math. 18 (2018), 181-247.
  12. Olver P.J., Applications of Lie groups to differential equations, Grad. Texts in Math., Vol. 107, Springer, New York, 1986.
  13. Olver P.J., Geometric foundations of numerical algorithms and symmetry, Appl. Algebra Engrg. Comm. Comput. 11 (2001), 417-436.
  14. Olver P.J., Joint invariant signatures, Found. Comput. Math. 1 (2001), 3-67.
  15. Olver P.J., On multivariate interpolation, Stud. Appl. Math. 116 (2006), 201-240.
  16. Tibshirani R.J., Divided differences, falling factorials, and discrete splines: Another look at trend filtering and related problems, Found. Trends Mach. Learn. 15 (2022), 694-846, arXiv:2003.03886.
  17. Winternitz P., Dorodnitsyn V.A., Kaptsov E.I., Kozlov R.V., First integrals of difference equations which do not posses a variational formulation, Dokl. Math. 89 (2014), 106-109.
  18. Zandra M., Theoretical and numerical topics in the invariant calculus of variations, Ph.D. Thesis, University of Kent, 2020.

Previous article  Next article  Contents of Volume 20 (2024)