Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 107, 31 pages      arXiv:2212.14722      https://doi.org/10.3842/SIGMA.2023.107
Contribution to the Special Issue on Enumerative and Gauge-Theoretic Invariants in honor of Lothar Göttsche on the occasion of his 60th birthday

On the Motivic Class of the Moduli Stack of Twisted $G$-Covers

Massimo Bagnarol a and Fabio Perroni b
a) Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, via Valerio 6/1, 34127 Trieste, Italy
b) Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, via Valerio 12/1, 34127 Trieste, Italy

Received January 02, 2023, in final form December 19, 2023; Published online December 27, 2023

Abstract
We describe the class, in the Grothendieck group of stacks, of the stack of twisted $G$-covers of genus $0$ curves, in terms of the loci corresponding to covers over smooth bases.

Key words: moduli spaces of covers; Grothendieck group of stacks.

pdf (638 kb)   tex (43 kb)  

References

  1. Abramovich D., Corti A., Vistoli A., Twisted bundles and admissible covers, Comm. Algebra 31 (2003), 3547-3618, arXiv:math.AG/0106211.
  2. Abramovich D., Graber T., Vistoli A., Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), 1337-1398, arXiv:math.AG/060315.
  3. Abramovich D., Vistoli A., Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), 27-75, arXiv:math.AG/9908167.
  4. Andreini E., Jiang Y., Tseng H.-H., Gromov-Witten theory of product stacks, Comm. Anal. Geom. 24 (2016), 223-277, arXiv:0905.2258.
  5. Arbarello E., Cornalba M., Griffiths P.A., Geometry of algebraic curves. Vol. II, Grundlehren Math. Wiss., Vol. 268, Springer, Heidelberg, 2011.
  6. Artin M., Grothendieck A., Verdier J., Théorie des topos et cohomologie étale des schémas. Séminaire de Géométrie Algébrique du Bois Marie 1963/64 SGA 4, Tome 1, Lecture Notes in Math., Vol. 269, Springer, Berlin, 1972.
  7. Bagnarol M., On the cohomology of moduli spaces of stable maps to Grassmannians, Ph.D. Thesis, SISSA, 2019, available at https://iris.sissa.it/handle/20.500.11767/103198.
  8. Bagnarol M., Betti numbers of stable map spaces to Grassmannians, Math. Nachr. 295 (2022), 1869-1900, arXiv:1911.05674.
  9. Behrend K., Cohomology of stacks, in Intersection Theory and Moduli, ICTP Lect. Notes, Vol. 19, Abdus Salam International Centre for Theoretical Physics, Trieste, 2004, 249-294.
  10. Behrend K., Dhillon A., On the motivic class of the stack of bundles, Adv. Math. 212 (2007), 617-644.
  11. Behrend K., Manin Yu., Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), 1-60, arXiv:alg-geom/9506023.
  12. Brandt M., Chan M., Kannan S., On the weight zero compactly supported cohomology of $\mathcal{H}_{g,n}$, arXiv:2307.01819.
  13. Catanese F., Lönne M., Perroni F., Irreducibility of the space of dihedral covers of the projective line of a given numerical type, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 22 (2011), 291-309, arXiv:1102.0490.
  14. Catanese F., Lönne M., Perroni F., The irreducible components of the moduli space of dihedral covers of algebraic curves, Groups Geom. Dyn. 9 (2015), 1185-1229, arXiv:1206.5498.
  15. Catanese F., Lönne M., Perroni F., Genus stabilization for the components of moduli spaces of curves with symmetries, Algebr. Geom. 3 (2016), 23-49, arXiv:1301.4409.
  16. Chen W., Ruan Y., Orbifold Gromov-Witten theory, in Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., Vol. 310, American Mathematical Society, Providence, RI, 2002, 25-85, arXiv:math.AG/0103156.
  17. Day B., On closed categories of functors, in Reports of the Midwest Category Seminar, IV, Lecture Notes in Math., Vol. 137, Springer, Berlin, 1970, 1-38.
  18. del Baño Rollin S., Navarro Aznar V., On the motive of a quotient variety, Collect. Math. 49 (1998), 203-226.
  19. Deligne P., Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5-57.
  20. Deligne P., Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5-77.
  21. Drummond-Cole G.C., Hackney P., Coextension of scalars in operad theory, Math. Z. 301 (2022), 275-314, arXiv:1906.12275.
  22. Ekedahl T., The Grothendieck group of algebraic stacks, arXiv:0903.3143.
  23. Fantechi B., Göttsche L., Orbifold cohomology for global quotients, Duke Math. J. 117 (2003), 197-227, arXiv:math.AG/0104207.
  24. Florentino C., Silva J., Hodge-Deligne polynomials of character varieties of free abelian groups, Open Math. 19 (2021), 338-362, arXiv:1711.07909.
  25. Fulton W., Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. 90 (1969), 542-575.
  26. Getzler E., Operads and moduli spaces of genus $0$ Riemann surfaces, in The Moduli Space of Curves (Texel Island, 1994), Progr. Math., Vol. 129, Birkhäuser, Boston, MA, 1995, 199-230, arXiv:alg-geom/9411004.
  27. Getzler E., Pandharipande R., The Betti numbers of $\overline{\mathcal M}_{0,n}(r,d)$, J. Algebraic Geom. 15 (2006), 709-732, arXiv:math.AG/0502525.
  28. Gillet H., Soulé C., Descent, motives and $K$-theory, J. Reine Angew. Math. 478 (1996), 127-176, arXiv:alg-geom/9507013.
  29. Göttsche L., On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8 (2001), 613-627.
  30. Guillén F., Navarro Aznar V., Un critère d'extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 1-91.
  31. Harris J., Mumford D., On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), 23-88.
  32. Jarvis T.J., Kaufmann R., Kimura T., Pointed admissible $G$-covers and $G$-equivariant cohomological field theories, Compos. Math. 141 (2005), 926-978, arXiv:math.AG/0302316.
  33. Joyce D., Motivic invariants of Artin stacks and 'stack functions', Q. J. Math. 58 (2007), 345-392, arXiv:math.AG/0509722.
  34. Keel S., Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), 545-574.
  35. Kelly G.M., Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 10 (2005), vi+137 pages.
  36. Kelly G.M., On the operads of J.P. May, Repr. Theory Appl. Categ. 13 (2005), 1-13.
  37. Loregian F., (Co)end calculus, London Math. Soc. Lecture Note Ser., Vol. 468, Cambridge University Press, Cambridge, 2021.
  38. Mac Lane S., Categories for the working mathematician, Grad. Texts in Math., Vol. 5, Springer, New York, 1998.
  39. Manin Yu.I., Generating functions in algebraic geometry and sums over trees, in The Moduli Space of Curves (Texel Island, 1994), Progr. Math., Vol. 129, Birkhäuser, Boston, MA, 1995, 401-417, arXiv:alg-geom/9407005.
  40. Olsson M.C., (Log) twisted curves, Compos. Math. 143 (2007), 476-494.
  41. Peters C., Tata lectures on motivic aspects of Hodge theory, TIFR-Lecture Notes on Math., Vol. 92, Tata Institute, Mumbai, 2010.
  42. Peters C., Steenbrink J.H.M., Mixed Hodge structures, Ergeb. Math. Grenzgeb. (3), Vol. 52, Springer, Berlin, 2008.
  43. Petersen D., The operad structure of admissible $G$-covers, Algebra Number Theory 7 (2013), 1953-1975, arXiv:1205.0420.
  44. Pikaart M., de Jong A.J., Moduli of curves with non-abelian level structure, in The Moduli Space of Curves (Texel Island, 1994), Progr. Math., Vol. 129, Birkhäuser, Boston, MA, 1995, 483-509, arXiv:alg-geom/9501003.
  45. Romagny M., Group actions on stacks and applications, Michigan Math. J. 53 (2005), 209-236.
  46. Toën B., Grothendieck rings of Artin $n$-stacks, arXiv:math.AG/0509098.
  47. Voisin C., Hodge theory and complex algebraic geometry. I, Cambridge Stud. Adv. Math., Vol. 76, Cambridge University Press, Cambridge, 2002.
  48. Yau D., Colored operads, Grad. Stud. Math., Vol. 170, American Mathematical Society, Providence, RI, 2016.

Previous article  Contents of Volume 19 (2023)