|
SIGMA 19 (2023), 106, 28 pages arXiv:2211.11429
https://doi.org/10.3842/SIGMA.2023.106
Manifolds of Lie-Group-Valued Cocycles and Discrete Cohomology
Alexandru Chirvasitu and Jun Peng
Department of Mathematics, University at Buffalo, Buffalo, NY 14260-2900, USA
Received June 18, 2023, in final form December 01, 2023; Published online December 24, 2023
Abstract
Consider a compact group $G$ acting on a real or complex Banach Lie group $U$, by automorphisms in the relevant category, and leaving a central subgroup $K\le U$ invariant. We define the spaces ${}_KZ^n(G,U)$ of $K$-relative continuous cocycles as those maps ${G^n\to U}$ whose coboundary is a $K$-valued $(n+1)$-cocycle; this applies to possibly non-abelian $U$, in which case $n=1$. We show that the ${}_KZ^n(G,U)$ are analytic submanifolds of the spaces $C(G^n,U)$ of continuous maps $G^n\to U$ and that they decompose as disjoint unions of fiber bundles over manifolds of $K$-valued cocycles. Applications include: (a) the fact that ${Z^n(G,U)\subset C(G^n,U)}$ is an analytic submanifold and its orbits under the adjoint of the group of $U$-valued $(n-1)$-cochains are open; (b) hence the cohomology spaces $H^n(G,U)$ are discrete; (c) for unital $C^*$-algebras $A$ and $B$ with $A$ finite-dimensional the space of morphisms $A\to B$ is an analytic manifold and nearby morphisms are conjugate under the unitary group $U(B)$; (d) the same goes for $A$ and $B$ Banach, with $A$ finite-dimensional and semisimple; (e) and for spaces of projective representations of compact groups in arbitrary $C^*$ algebras (the last recovering a result of Martin's).
Key words: Banach Lie group; Lie algebra; group cohomology; cocycle; coboundary; infinite-dimensional manifold; immersion; analytic; $C^*$-algebra; unitary group; Banach algebra; semisimple; Jacobson radical.
pdf (548 kb)
tex (38 kb)
References
- Adámek J., Rosický J., Locally presentable and accessible categories, London Math. Soc. Lecture Note Ser, Vol. 189, Cambridge University Press, Cambridge, 1994.
- An J., Wang Z., Nonabelian cohomology with coefficients in Lie groups, Trans. Amer. Math. Soc. 360 (2008), 3019-3040, arXiv:math.GR/0506625.
- Andruchow E., Corach G., Stojanoff D., A geometric characterization of nuclearity and injectivity, J. Funct. Anal. 133 (1995), 474-494.
- Arveson W., An invitation to $C^*$-algebras, Grad. Texts in Math., Vol. 39, Springer, New York, 1976.
- Baird T.J., Cohomology of the space of commuting $n$-tuples in a compact Lie group, Algebr. Geom. Topol. 7 (2007), 737-754, arXiv:math.AT/0610761.
- Black P., big-O notation, available at https://www.nist.gov/dads/HTML/bigOnotation.html.
- Borel A., Semisimple groups and Riemannian symmetric spaces, Texts Read. Math., Vol. 16, Hindustan Book Agency, New Delhi, 1998.
- Bourbaki N., Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 `a 7), Actualités Sci. Indust., Vol. 1333, Hermann, Paris, 1967.
- Bourbaki N., Éléments de mathématique. Fasc. XXXVI. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 8 `a 15), Actualités Sci. Indust., Vol. 1347, Hermann, Paris, 1971.
- Bourbaki N., Lie groups and Lie algebras: Chapters 1-3, Springer, Berlin, 1989.
- Brown K.S., Cohomology of groups, Grad. Texts in Math., Vol. 87, Springer, New York, 1982.
- Caenepeel S., Militaru G., Zhu S., Frobenius and separable functors for generalized module categories and nonlinear equations, Lecture Notes in Math, Vol. 1787, Springer, Berlin, 2002.
- Corach G., Galé J.E., Averaging with virtual diagonals and geometry of representations, in Banach Algebras 97, De Gruyter, Berlin, 1998, 87-100.
- Corach G., Galé J.E., On amenability and geometry of spaces of bounded representations, J. Lond. Math. Soc. 59 (1999), 311-329.
- Dales H.G., Banach algebras and automatic continuity, London Math. Soc. Monog. New Series, Vol. 24, The Clarendon Press, Oxford University Press, New York, 2000.
- Dales H.G., Aiena P., Eschmeier J., Laursen K., Willis G.A., Introduction to Banach algebras, operators, and harmonic analysis, London Math. Soc. Stud. Texts, Vol. 57, Cambridge University Press, Cambridge, 2003.
- Eisenbud D., Harris J., 3264 and all that. A second course in algebraic geometry, Cambridge University Press, Cambridge, 2016.
- Evens L., The cohomology of groups, Oxford Math. Monog., The Clarendon Press, Oxford University Press, New York, 1991.
- Fulton W., Harris J., Representation theory. A first course, Grad. Texts in Math., Vol. 129, Springer, New York, 1991.
- Ginzburg V., Lectures on noncommutative geometry, arXiv:math.AG/0506603.
- Hofmann K.H., Morris S.A., The structure of compact groups. A primer for the student - a handbook for the expert, De Gruyter Stud. Math., Vol. 25, De Gruyter, Berlin, 2020.
- Iwasawa K., On some types of topological groups, Ann. of Math. 50 (1949), 507-558.
- Johnson B.E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., Vol. 127, American Mathematical Society, Providence, RI, 1972.
- Lam T.Y., A first course in noncommutative rings, Grad. Texts in Math., Vol. 131, Springer, New York, 2001.
- Lang S., Fundamentals of differential geometry, Grad. Texts in Math., Vol. 191, Springer, New York, 1999.
- Lawton S., Sikora A.S., Varieties of characters, Algebr. Represent. Theory 20 (2017), 1133-1141, arXiv:1604.02164.
- Martin M., Projective representations of compact groups in $C^*$-algebras, in Linear Operators in Function Spaces, Oper. Theory Adv. Appl., Vol. 43, Birkhäuser, Basel, 1990, 237-253.
- Milnor J.W., Stasheff J.D., Characteristic classes, Ann. of Math. Stud., Vol. 76, Princeton University Press, Princeton, NJ, 1974.
- Montgomery D., Zippin L., A theorem on Lie groups, Bull. Amer. Math. Soc. 48 (1942), 448-452.
- Moore C.C., Extensions and low dimensional cohomology theory of locally compact groups. I, Trans. Amer. Math. Soc. 113 (1964), 40-63.
- Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, Ergeb. Math. Grenzgeb. (2), Vol. 34, Springer, Berlin, 1994.
- Munkres J.R., Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.
- Neeb K.-H., Infinite-dimensional groups and their representations, in Lie Theory, Progr. Math., Vol. 228, Birkhäuser Boston, Boston, MA, 2004, 213-328.
- Neeb K.-H., Towards a Lie theory of locally convex groups, Jpn. J. Math. 1 (2006), 291-468, arXiv:1501.06269.
- Omori H., Infinite-dimensional Lie groups, Transl. Math. Monogr., Vol. 158, American Mathematical Society, Providence, RI, 1997.
- Pierce R.S., Associative algebras, Grad. Texts in Math., Vol. 88, Springer, New York, 1982.
- Pothoven K., Projective and injective objects in the category of Banach spaces, Proc. Amer. Math. Soc. 22 (1969), 437-438.
- Pressley A., Segal G., Loop groups, Oxford Math. Monog., The Clarendon Press, Oxford University Press, New York, 1986.
- Rotman J.J., An introduction to homological algebra, Universitext, Springer, New York, 2009.
- Runde V., Lectures on amenability, Lecture Notes in Math., Vol. 1774, Springer, Berlin, 2002.
- Ryan R.A., Introduction to tensor products of Banach spaces, Springer Monogr. Math., Springer, London, 2002.
- Serre J.-P., Local fields, Grad. Texts in Math., Vol. 67, Springer, New York, 1979.
- Serre J.-P., Lie algebras and Lie groups: 1964 lectures given at Harvard University, Lecture Notes in Math., Vol. 1500, Springer, Berlin, 1992.
- Serre J.-P., Galois cohomology, Springer, Berlin, 1997.
- Takesaki M., Theory of operator algebras II, Encyclopaedia Math. Sci., Vol. 125, Springer, Berlin, 2003.
- Torres Giese E., Sjerve D., Fundamental groups of commuting elements in Lie groups, Bull. Lond. Math. Soc. 40 (2008), 65-76.
- Upmeier H., Symmetric Banach manifolds and Jordan $C^\ast$-algebras, North-Holland Math. Stud., Vol. 104, North-Holland Publishing Co., Amsterdam, 1985.
- Wegge-Olsen N.E., $K$-theory and $C^*$-algebras. A friendly approach, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York, 1993.
- Wilansky A., Modern methods in topological vector spaces, McGraw-Hill International Book Co., New York, 1978.
|
|