Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 104, 22 pages      arXiv:2303.05602      https://doi.org/10.3842/SIGMA.2023.104
Contribution to the Special Issue on Evolution Equations, Exactly Solvable Models and Random Matrices in honor of Alexander Its' 70th birthday

Szegő Kernel and Symplectic Aspects of Spectral Transform for Extended Spaces of Rational Matrices

Marco Bertola, Dmitry Korotkin and Ramtin Sasani
Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve W., Montréal, H3G 1M8 Québec, Canada

Received March 14, 2023, in final form December 02, 2023; Published online December 22, 2023

Abstract
We revisit the symplectic aspects of the spectral transform for matrix-valued rational functions with simple poles. We construct eigenvectors of such matrices in terms of the Szegő kernel on the spectral curve. Using variational formulas for the Szegő kernel we construct a new system of action-angle variables for the canonical symplectic form on the space of such functions. Comparison with previously known action-angle variables shows that the vector of Riemann constants is the gradient of some function on the moduli space of spectral curves; this function is found in the case of matrix dimension 2, when the spectral curve is hyperelliptic.

Key words: spectral transform; Szegő kernel; variational formulas.

pdf (493 kb)   tex (28 kb)  

References

  1. Adams M.R., Harnad J., Hurtubise J., Darboux coordinates and Liouville-Arnol'd integration in loop algebras, Comm. Math. Phys. 155 (1993), 385-413, arXiv:hep-th/9210089.
  2. Alekseev A.Yu., Faddeev L.D., $(T^*G)_t$: a toy model for conformal field theory, Comm. Math. Phys. 141 (1991), 413-422.
  3. Alekseev A.Yu., Malkin A.Z., Symplectic structures associated to Lie-Poisson groups, Comm. Math. Phys. 162 (1994), 147-173, arXiv:hep-th/9303038.
  4. Babelon O., Bernard D., Talon M., Introduction to classical integrable systems, Camb. Monogr. Math. Phys., Cambridge University Press, Cambridge, 2003.
  5. Balduzzi D., Donagi-Markman cubic for Hitchin systems, Math. Res. Lett. 13 (2006), 923-933, arXiv:math.AG/0607060.
  6. Bertola M., Korotkin D., Spaces of Abelian differentials and Hitchin's spectral covers, Int. Math. Res. Not. (2021), 11246-11269, arXiv:1812.05789.
  7. Bertola M., Korotkin D., Tau-functions and monodromy symplectomorphisms, Comm. Math. Phys. 388 (2021), 245-290, arXiv:1910.03370.
  8. Borot G., Eynard B., Geometry of spectral curves and all order dispersive integrable system, SIGMA 8 (2012), 100, 53 pages, arXiv:1110.4936.
  9. Donagi R., Markman E., Cubics, integrable systems, and Calabi-Yau threefolds, in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., Vol. 9, Bar-Ilan University, Ramat Gan, 1996, 199-221, arXiv:alg-geom/9408004.
  10. Etingof P., On the dynamical Yang-Baxter equation, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Vol. 2, Higher Education Press, Beijing, 2002, 555-570, arXiv:math.QA/0207008.
  11. Faddeev L.D., Takhtajan L.A., Hamiltonian methods in the theory of solitons, Class. Math., Springer, Berlin, 2007.
  12. Fay J.D., Theta functions on Riemann surfaces, Lect. Notes Math., Vol. 352, Springer, Berlin, 1973.
  13. Fay J.D., Kernel functions, analytic torsion, and moduli spaces, Mem. Am. Math. Soc. 96 (1992), vi+123 pages.
  14. Hitchin N.J., The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987), 59-126.
  15. Hitchin N.J., Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114.
  16. Kalla C., Korotkin D., Baker-Akhiezer spinor kernel and tau-functions on moduli spaces of meromorphic differentials, Comm. Math. Phys. 331 (2014), 1191-1235, arXiv:1307.0481.
  17. Knizhnik V.G., Multiloop amplitudes in the theory of quantum strings and complex geometry, Soviet Phys. Uspekhi 32 (1989), 945-971.
  18. Kokotov A., Korotkin D., Tau-functions on spaces of abelian differentials and higher genus generalizations of Ray-Singer formula, J. Differential Geom. 82 (2009), 35-100, arXiv:math.SP/0405042.
  19. Korotkin D., Matrix Riemann-Hilbert problems related to branched coverings of ${\mathbb C}{\rm P}^1$, in Factorization and Integrable Systems (Faro, 2000), Oper. Theory Adv. Appl., Vol. 141, Birkhäuser, Basel, 2003, 103-129, arXiv:math-ph/0106009.
  20. Korotkin D., Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices, Math. Ann. 329 (2004), 335-364, arXiv:math-ph/0306061.
  21. Krichever I.M., Integration of nonlinear equations by the methods of algebraic geometry, Funct. Anal. Appl. 11 (1977), 12-26.
  22. Krichever I.M., The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories, Commun. Pure Appl. Math. 47 (1994), 437-475, arXiv:hep-th/9205110.
  23. Krichever I.M., Vector bundles and Lax equations on algebraic curves, Commun. Math. Phys. 229 (2002), 229-269, arXiv:hep-th/0108110.
  24. Krichever I.M., Phong D.H., Symplectic forms in the theory of solitons, in Surveys in Differential Geometry: Integrable Systems, Surv. Differ. Geom., Vol. 4, International Press, Boston, MA, 1998, 239-313.
  25. Novikov S., Manakov S.V., Pitaevskiǐ L.P., Zakharov V.E., Theory of solitons: The inverse scattering method, Contemp. Soviet Math., Consultants Bureau, New York, 1984.

Previous article  Next article  Contents of Volume 19 (2023)