|
SIGMA 19 (2023), 101, 36 pages arXiv:2307.04763
https://doi.org/10.3842/SIGMA.2023.101
Contribution to the Special Issue on Symmetry, Invariants, and their Applications in honor of Peter J. Olver
On the Total CR Twist of Transversal Curves in the 3-Sphere
Emilio Musso a and Lorenzo Nicolodi b
a) Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
b) Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy
Received July 11, 2023, in final form November 26, 2023; Published online December 21, 2023
Abstract
We investigate the total CR twist functional on transversal curves in the standard CR 3-sphere $\mathrm S^3 \subset \mathbb C^2$. The question of the integration by quadratures of the critical curves and the problem of existence and properties of closed critical curves are addressed. A procedure for the explicit integration of general critical curves is provided and a characterization of closed curves within a specific class of general critical curves is given. Experimental evidence of the existence of infinite countably many closed critical curves is provided.
Key words: CR 3-sphere; transversal curves; CR invariants; total CR twist; Griffiths' formalism; Lax formulation of E-L equations; integration by quadratures; closed critical curves.
pdf (13204 kb)
tex (12698 kb)
References
- Bennequin D., Entrelacements et équations de Pfaff, Astérisque 107 (1983), 87-161.
- Bryant R.L., On notions of equivalence of variational problems with one independent variable, in Differential Geometry: the Interface Between Pure and Applied Mathematics (San Antonio, Tex., 1986), Contemp. Math., Vol. 68, American Mathematical Society, Providence, RI, 1987, 65-76.
- Calabi E., Olver P.J., Shakiban C., Tannenbaum A., Haker S., Differential and numerically invariant signature curves applied to object recognition, Int. J. Comput. Vis. 26 (1998), 107-135.
- Calini A., Ivey T., Integrable geometric flows for curves in pseudoconformal $S^3$, J. Geom. Phys. 166 (2021), 104249, 17 pages.
- Cartan E., Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes II, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 1 (1932), 333-354.
- Cartan E., Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, Ann. Mat. Pura Appl. 11 (1933), 17-90.
- Chern S.S., Moser J.K., Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271.
- Chiu H.-L., Ho P.T., Global differential geometry of curves in three-dimensional Heisenberg group and CR sphere, J. Geom. Anal. 29 (2019), 3438-3469.
- Dzhalilov A., Musso E., Nicolodi L., Conformal geometry of timelike curves in the $(1+2)$-Einstein universe, Nonlinear Anal. 143 (2016), 224-255, arXiv:1603.01035.
- Eliashberg Y., Legendrian and transversal knots in tight contact $3$-manifolds, in Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 171-193.
- Eshkobilov O., Musso E., Nicolodi L., The geometry of conformal timelike geodesics in the Einstein universe, J. Math. Anal. Appl. 495 (2021), 124730, 32 pages.
- Etnyre J.B., Introductory lectures on contact geometry,in Topology and Geometry of Manifolds (Athens, GA, 2001), Proc. Sympos. Pure Math., Vol. 71, American Mathematical Society, Providence, RI, 2003, 81-107, arXiv:math.SG/0111118.
- Etnyre J.B., Transversal torus knots, Geom. Topol. 3 (1999), 253-268, arXiv:math.GT/9906195.
- Etnyre J.B., Legendrian and transversal knots, in Handbook of Knot Theory, Elsevier, Amsterdam, 2005, 105-185, arXiv:math.SG/0306256.
- Etnyre J.B., Honda K., Knots and contact geometry I: Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001), 63-120, arXiv:math.GT/0006112.
- Fels M., Olver P.J., Moving coframes: I. A practical algorithm, Acta Appl. Math. 51 (1998), 161-213.
- Fels M., Olver P.J., Moving coframes: II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), 127-208.
- Fuchs D., Tabachnikov S., Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997), 1025-1053.
- Griffiths P.A., Exterior differential systems and the calculus of variations, Progr. Math., Vol. 25, Birkhäuser, Boston, MA, 1983.
- Hoffman W.C., The visual cortex is a contact bundle, Appl. Math. Comput. 32 (1989), 137-167.
- Hsu L., Calculus of variations via the Griffiths formalism, J. Differential Geom. 36 (1992), 551-589.
- Jacobowitz H., Chains in CR geometry, J. Differential Geom. 21 (1985), 163-194.
- Klein F., Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Birkhäuser, Basel, 1993.
- Kogan I.A., Ruddy M., Vinzant C., Differential signatures of algebraic curves, SIAM J. Appl. Algebra Geom. 4 (2020), 185-226, arXiv:1812.11388.
- Musso E., Liouville integrability of a variational problem for Legendrian curves in the three-dimensional sphere, in Selected Topics in Cauchy-Riemann Geometry, Quad. Mat., Vol. 9, Seconda Università di Napoli, Caserta, 2001, 281-306.
- Musso E., Grant J.D.E., Coisotropic variational problems, J. Geom. Phys. 50 (2004), 303-338, arXiv:math.DG/0307216.
- Musso E., Nicolodi L., Closed trajectories of a particle model on null curves in anti-de Sitter 3-space, Classical Quantum Gravity 24 (2007), 5401-5411, arXiv:0709.2017.
- Musso E., Nicolodi L., Reduction for constrained variational problems on 3-dimensional null curves, SIAM J. Control Optim. 47 (2008), 1399-1414.
- Musso E., Nicolodi L., Invariant signatures of closed planar curves, J. Math. Imaging Vision 35 (2009), 68-85.
- Musso E., Nicolodi L., Quantization of the conformal arclength functional on space curves, Comm. Anal. Geom. 25 (2017), 209-242, arXiv:1501.04101.
- Musso E., Nicolodi L., Salis F., On the Cauchy-Riemann geometry of transversal curves in the 3-sphere, J. Math. Phys. Anal. Geom. 16 (2020), 312-363, arXiv:2004.11350.
- Musso E., Salis F., The Cauchy-Riemann strain functional for Legendrian curves in the 3-sphere, Ann. Mat. Pura Appl. 199 (2020), 2395-2434, arXiv:2003.01713.
- Nash O., On Klein's icosahedral solution of the quintic, Expo. Math. 32 (2014), 99-120, arXiv:1308.0955.
- Olver P.J., Applications of Lie groups to differential equations, Grad. Texts in Math., Vol. 107, Springer, New York, 1993.
- Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995.
- Petitot J., Elements of neurogeometry, Lect. Notes Morphog., Springer, Cham, 2017.
- Storn R., Price K., Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim. 11 (1997), 341-359.
- Trott M., Adamchik V., Solving the quintic with textscMathematica, available at https://library.wolfram.com/infocenter/TechNotes/158/.
|
|